
www.manaraa.com

LIGHTWEIGHT AUTHENTICATED ENCRYPTION
FOR FPGAS

by

Upendarreddy Mamidi
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Computer Engineering

Committee:

Dr. Jens-Peter Kaps, Thesis Director

Dr. Kris Gaj, Committee Member

Dr. Alok Berry, Committee Member

Dr. Monson H. Hayes, Chairman, Department
of Electrical and Computer Engineering

Dr. Kenneth S. Ball, Dean,
Volgenau School of Engineering

Date: Spring Semester 2016
George Mason University
Fairfax, VA

www.manaraa.com

Lightweight Authenticated Encryption for FPGAs

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Upendarreddy Mamidi
Bachelor of Technology

VIT University, India, 2013

Director: Dr. Jens-Peter Kaps, Associate Professor
Department of Electrical and Computer Engineering

Spring Semester 2016
George Mason University

Fairfax, VA

www.manaraa.com

Copyright c© 2016 by Upendarreddy Mamidi
All Rights Reserved

ii

www.manaraa.com

Dedication

I dedicate this thesis to my parents Siddiram Reddy and Manemma, brother Mahendar and sister
Srilatha and beloved friends.

iii

www.manaraa.com

Acknowledgments

I would like to express my gratitude to my advisor Dr. Jens-Peter Kaps for helping me with useful
comments and remarks throughout the course of the thesis. Furthermore I would like to thank Dr.
Kris Gaj, Pansayya Yalla and Ekawat Homsirikamol for their continuous support in getting the work
done. Finally, I would like to thank Sangamitra without whose help, it would have been difficult to
complete the thesis.

iv

www.manaraa.com

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xi

1 Introduction . 0

1.1 Security Services of Cryptography . 0

1.1.1 Confidentiality . 0

1.1.2 Data Integrity . 1

1.1.3 Authentication . 1

1.1.4 Non-repudiation of Message . 1

1.2 Confidentiality-only Modes of Operations of Block Ciphers 2

1.2.1 Electronic Code Book (ECB) Mode . 2

1.2.2 Cipher Block Chaining(CBC) Mode . 3

1.2.3 Cipher Feedback (CFB) Mode . 4

1.2.4 Output Feedback(OFB) Mode . 5

1.2.5 Counter (CTR) Mode . 6

1.3 Authentication Techniques . 7

1.3.1 Cryptographic Hash Functions . 7

1.3.2 Message Authentication Code(MAC) . 8

1.4 Authenticated Encryption . 12

1.4.1 What is Authenticated Encryption? . 12

1.4.2 Advantages of Authenticated Encryption . 13

1.4.3 Composition Schemes . 14

2 Classification of the CAESAR Candidates . 16

2.1 Introduction . 16

2.1.1 Functional Requirements of the CAESAR Competition 16

2.2 Design Classification . 17

2.2.1 Type . 17

2.2.2 Features . 19

3 Design Decisions . 24

v

www.manaraa.com

3.1 Candidate Selection . 24

3.2 Hardware Interface for Fullwidth Designs . 24

3.3 Lightweight Interface . 25

3.4 Design Methodology . 26

3.5 Functional Verification . 26

3.6 Results Generation . 27

4 SILC: SImple Lightweight CFB . 28

4.1 Introduction . 28

4.1.1 Features . 28

4.1.2 Recommended Parameter Set . 28

4.2 Encryption and Decryption . 29

4.2.1 Functions Used in SILC . 29

4.2.2 Subroutines Used in SILC . 30

4.3 Fullwidth Implementation . 33

4.3.1 Datapath Design . 33

4.3.2 Design of Control Logic . 35

4.4 Lightweight Implementation . 37

4.4.1 Datapath Design for Lightweight Implementation 37

4.4.2 Design of Controller . 39

5 Joltik . 42

5.1 Introduction . 42

5.1.1 Features . 42

5.2 Joltik-BC . 42

5.2.1 S-box . 43

5.2.2 MDS Matrix . 43

5.2.3 Generation of Subtweakeys . 44

5.3 Encryption and Decryption . 45

5.3.1 Message Processing . 46

5.4 Fullwidth Implementation . 48

5.4.1 Datapath Design . 48

5.4.2 Design of Control Logic . 49

5.5 Lightweight Implementation . 51

5.5.1 Lightweight Joltik-BC . 51

5.5.2 Optimized Datapath for Lightweight Implementation 54

5.5.3 Controller Design . 54

6 ACORN: A Lightweight Authenticated Cipher . 58

6.1 Introduction . 58

6.1.1 Features . 58

vi

www.manaraa.com

6.1.2 Functions Used in ACORN . 58

6.2 Encryption and Decryption . 61

6.2.1 The Initialization . 61

6.2.2 Processing the Associated Data . 61

6.2.3 The Encryption . 61

6.2.4 The Finalization . 62

6.2.5 Decryption and Verification . 63

6.3 Fullwidth Implementation . 63

6.3.1 Datapath Design . 63

6.3.2 Design of Control Logic . 64

6.4 Lightweight Implementation . 67

6.4.1 Datapath Design . 67

6.4.2 Control Logic Design . 69

7 Performance Evaluation . 71

7.1 Our Implementation Results . 71

7.1.1 Throughput Computations . 71

7.1.2 Resource Utilization . 72

7.1.3 Throughput/Area . 73

7.2 Analysis of the Results . 73

7.2.1 Area . 73

7.2.2 Throughput/Area . 74

7.3 Comparison with Other Published Results . 75

7.3.1 Fullwidth Designs . 76

7.3.2 Lightweight Designs . 76

8 Conclusion . 78

8.1 Work Accomplished . 78

8.2 Ranking of Our Implementations . 78

Bibliography . 80

vii

www.manaraa.com

List of Tables

Table Page

2.1 Classification of CAESAR Round Two candidates 21

2.2 Classification of CAESAR Round One Candidates 22

4.1 Recommended Parameter Set of SILC . 29

5.1 S-Box Used in Joltik-BC . 43

5.2 H Permutation in Joltik-BC . 44

6.1 Message and Control Bits in Initialization Process 61

6.2 Message and Control Bits for Processing Associated Data 61

6.3 Message and Control Bits for Encryption . 62

6.4 Message and Control Bits for the Finalization . 62

7.1 Notations . 71

7.2 Throughput formulae for our implementations of CAESAR candidates 72

7.3 Resource Utilization . 73

7.4 Throughput Results of Our Implementations . 73

7.5 Fullwidth Design Implementation Results Comparison 76

7.6 Lightweight Design Implementation Results Comparison 77

viii

www.manaraa.com

List of Figures

Figure Page

1.1 Confidentiality . 0

1.2 Integrity . 1

1.3 Authentication . 1

1.4 ECB Encryption . 3

1.5 ECB Decryption . 3

1.6 CBC Encryption . 4

1.7 CBC Decryption . 4

1.8 CFB Encryption . 5

1.9 CFB Decryption . 5

1.10 OFB Encryption . 6

1.11 OFB Decryption . 6

1.12 CTR Encryption . 7

1.13 CTR Decryption . 7

1.14 Operation of a Hash Function . 8

1.15 Operation of a MAC Function . 9

1.16 Operation of a HMAC Function . 10

1.17 Operation of the CBC-MAC Algorithm . 11

1.18 Operation of the PMAC Algorithm . 12

1.19 Authenticated Encryption with Associated Data . 13

1.20 Operation of EtM . 14

1.21 Operation of MtE . 15

1.22 Operation of E&M . 15

2.1 Block Cipher . 17

2.2 Stream Cipher . 18

2.3 Tweakable Block Cipher . 18

3.1 Hardware Interface for Fullwidth Designs . 25

3.2 Hardware Interface for Lightweight Designs . 26

4.1 HASH Function . 30

4.2 PRF Function . 31

ix

www.manaraa.com

4.3 ENC Function . 32

4.4 DEC Function . 33

4.5 Datapath Design of SILC . 34

4.6 Toplevel State Machine of SILC . 36

4.7 Toplevel Structure of SILC . 37

4.8 Lightweight Design of SILC . 39

4.9 Toplevel State Machine of Our Lightweight Design of SILC 40

4.10 Toplevel Structure of Our SILC Lightweight Design 41

5.1 Key Scheduling Algorithm of Joltik-BC 192 . 44

5.2 Associated Data Processing Without Padding . 45

5.3 Associated Data Processing with Padding . 46

5.4 Message Processing Without Padding in Joltik . 47

5.5 Message Processing With Padding in Joltik . 47

5.6 Datapath Design of Joltik . 49

5.7 Toplevel State Machine of Joltik . 50

5.8 Toplevel Diagram of Joltik . 51

5.9 Optimized Datapath Design of Joltik-BC . 53

5.10 Lightweight Datapath Design of Joltik . 55

5.11 Toplevel State Machine of Our Lightweight Joltik Design 56

5.12 Toplevel Structure of Joltik . 57

6.1 Boolean Functions of ACORN . 58

6.2 KSG function . 59

6.3 FBK Function . 59

6.4 Block Diagram of State Update Function . 60

6.5 State Update Function . 60

6.6 Datapath Design of ACORN . 64

6.7 Toplevel State Machine of ACORN . 66

6.8 Toplevel Design of ACORN . 67

6.9 Light-Weight Datapath Design of ACORN . 68

6.10 Toplevel State Machine of our ACORN Lightweight Design 69

6.11 Toplevel Structure of ACORN our Lightweight Design 70

7.1 Comparison of Slices . 74

7.2 Comparison of Throuhput/Area . 75

x

www.manaraa.com

Abstract

LIGHTWEIGHT AUTHENTICATED ENCRYPTION FOR FPGAS

Upendarreddy Mamidi, M.S.

George Mason University, 2016

Thesis Director: Dr. Jens-Peter Kaps

Traditionally, authenticated encryption was achieved by using two seperate algorithms for en-

cryption and authentication. Recently, modes that combine encryption and authentication together

are being proposed. This feature is especially beneficial in case of hardware implementations, as it

allows for a substantial decrease in the circuit area and power compared to traditional schemes.

In this thesis, we first characterize candidates of the Competition for Authenticated Encryption:

Security, Applicability, and Robustness (CAESAR). Then we discuss light-weight candidates from

the round 1 submissions namely ACORN, SILC (SImple Lightweight CFB) and Joltik. We first

implement the full width designs of these candidates targeting Xilinx Spartan-6 and Artix-7 FPGAs.

Later, we optimize these designs for low-area applications. Lastly, we compare the results of the

implementations with other published results.

www.manaraa.com

Chapter 1: Introduction

In this chapter we first discuss the basic security objectives of any cryptographic system and then

the methods that assure the security objectives. Later, we introduce the topic of Authenticated

Encryption and it’s advantages over traditional schemes.

1.1 Security Services of Cryptography

There are four security objectives of cryptography that form the structure of security services, namely

1. Confidentiality.

2. Data Integrity.

3. Authentication.

4. Non-repudiation of Message.

1.1.1 Confidentiality

This is a service that protects the data from unauthorized disclosure. In simpler words, confiden-

tiality is said to be ensured if and only if the sender and receiver of the message can get access to

it. Figure 1.1 shows the confidentiality service. Confidentiality ensures that Eve, who is not a part

of the communication and is unauthorized will not get access to the message that is sent by Alice

to Bob.

 Bob Alice Message

 Eve

Figure 1.1: Confidentiality

0

www.manaraa.com

1.1.2 Data Integrity

Data integrity can be defined as an assurance that the data received is unaltered or unchanged

during transmission. Data modifications include insertion of bits, deletion of bits or substitutions.

Figure 1.2 shows the integrity service. Integrity ensures that Bob detects the modification of data

done by Eve, who is an unauthorized person.

 Bob

 Eve

 Alice

Figure 1.2: Integrity

1.1.3 Authentication

Authentication is a process of verifying the identity of a user who wishes to access the information,

this type of authentication is called as peer-entity authentication. Another type of authentication is

data origin authentication which ensures that the data is originally coming from the actual sender and

not from any third party. Figure 1.3 shows the authentication service. Authentication guarantees

for Bob that the message is originated from Alice who claims to be the author.

 Eve

 Bob Alice

Figure 1.3: Authentication

1.1.4 Non-repudiation of Message

Non-repudiation of a message is a service which prevents both communicating parties from denying

sending or receiving the message. Digital signature technique is one way assuring Non-repudiation

1

www.manaraa.com

of a message.

In practice we often need both confidentiality and authentication for example, medical infor-

mation sent my doctors has to be both confidential and authentic. Traditionally these two ser-

vices are achieved using separate algorithms. Confidentiality is provided by encryption, various

confidentiality-only modes of operations are explained in section1.2. Authentication can be pro-

vided by message authentication codes (MACs). These authentication techniques are covered in

section 1.3

1.2 Confidentiality-only Modes of Operations of Block Ci-

phers

A mode of operation of a block cipher is an algorithm that uses symmetric key block cipher algorithm

to provide a cryptographic service such as confidentiality or authentication. This section covers the

basic modes of operation provide only confidentiality

1.2.1 Electronic Code Book (ECB) Mode

ECB is the most basic mode of operation. The input message is broken into blocks of length equal to

the block size of the cipher. Each block is encrypted separately. In the same way at the receiver side

the ciphertext is broken into blocks with block size length and each block of ciphertext is decrypted

separately. Figures 1.4, 1.5 explain the operation of ECB encryption and Decryption respectively.

The disadvantage of ECB mode is that it produces identical ciphertext blocks for identical input

blocks and that the block cipher needs encryption and decryption modes.

2

www.manaraa.com

C[n−1]C[0] C[1] C[n]

K K K
 E E E E

K

M[0] M[1] M[n−1] M[n]

Figure 1.4: ECB Encryption

K K KK

C[0] C[1] C[n−1] C[n]

D

M[0] M[1] M[n−1] M[n]

D D D

Figure 1.5: ECB Decryption

1.2.2 Cipher Block Chaining(CBC) Mode

Each subsequent plaintext block is XORed with the previous ciphertext block. In order to make

each message unique the first block of plaintext is XORed with an Initilization Vector(IV). At the

receiver side, the plain text is obtained by decrypting the ciphertext and XORing it with IV for

the first block of ciphertext and with previous plaintext for all subsequent ciphertexts. The main

drawback of CBC is that it cannot be parallelized and needs a block cipher that can encrypt and

decrypt. Figures 1.6, 1.7 explain the operation of CBC encryption and decryption respectively.

3

www.manaraa.com

K K K
 E E E E

K

IV

M[0] M[1] M[n−1] M[n]

C[0] C[n]C[n−1]C[1]

Figure 1.6: CBC Encryption

C[0] C[n]C[n−1]C[1]

M[0] M[1] M[n−1] M[n]

K K K
D D D

K

IV

D

Figure 1.7: CBC Decryption

1.2.3 Cipher Feedback (CFB) Mode

In CipherFeedback mode(CFB) the first block of ciphertext is obtained by encrypting an Initilization

Vector (IV) and XORing it with a plaintext block. The resulting ciphertext block is supplied as the

feedback for generating next block of ciphertext. CFB mode is inverse free which means that,an

encryption algorithm alone is sufficient for both encryption and decryption. The advantage of CFB

is that it doesn’t need any padding. CFB is self-synchronizing which means that loss in a part

of ciphertext will only affect a part of plaintext. Figures 1.8, 1.9 explain the operation of CFB

encryption and decryption respectively.

4

www.manaraa.com

C[n−1]C[0] C[1] C[n]

K K
 E E E E

K

IV

........

K

M[0] M[1] M[n−1] M[n]

Figure 1.8: CFB Encryption

M[0] M[1] M[n−1] M[n]

K K K
E

K

IV

C[n]

C[0] C[1] C[n−1]

C[n−2]

 E E E

Figure 1.9: CFB Decryption

1.2.4 Output Feedback(OFB) Mode

Operation of OFB is similar to that of CFB, however unlike CFB the feedback in OFB is the output

of the encryption function. In OFB, every operation depends on previous operations there by it

cannnot be parallized. OFB is inverse free, meaning both encryption and decryption operations

can be performed using encryption algorithm alone. Figures 1.10,1.11 explain the operation OFB

encryption and decryption respectively.

5

www.manaraa.com

C[n−1]C[0] C[1] C[n]

M[0] M[1] M[n−1] M[n]

K K KK
E E E

IV

 E

Figure 1.10: OFB Encryption

C[n−1]C[0] C[1] C[n]

M[0] M[1] M[n−1] M[n]

K K K
 E E E E

K

IV C[n−2]

Figure 1.11: OFB Decryption

1.2.5 Counter (CTR) Mode

The inputs to an encryption function in CTR mode are a plaintext(M), key(K) and a counter (ctr)

where ctr is an n-bit string. First, the ctr is encrypted and then the plaintext is XORed with the

encrypted value to get the first block of ciphertext (C). Then ctr is incremented for generating the

subsequent ciphertext blocks. The decryption is similar to encryption with M replaced by C. Figures

1.12,1.13 explain the operation of CTR encryption and decryption respectively.

6

www.manaraa.com

M[0] M[1] M[n−1] M[n]

C[n−1]C[0] C[1] C[n]

K K K
 E E E E

K

ctr ctr+1 ctr+n−2 ctr+n−1

Figure 1.12: CTR Encryption

C[n−1]C[0] C[1] C[n]

M[0] M[1] M[n−1] M[n]

K K K
 E E E E

K

ctr+1 ctr+n−1ctr ctr+n−2

Figure 1.13: CTR Decryption

1.3 Authentication Techniques

As explained earlier in 1.1.3, the purpose authentication is to ensure that the data comes from the

person who claims to be the sender. This section covers a detailed explanation of authentication

techniques.

1.3.1 Cryptographic Hash Functions

A hash function is basically a transformation that takes a variable size input and returns it’s hash

value, which is a fixed length string. Hash functions are used as components for MACs. The input

to any hash function is called as message and the output is called as message digest. The length of

the message is arbitrary but the length of the output is fixed. Figure 1.14 explain the operation of

a hash function.

7

www.manaraa.com

Fixed length

Arbitrary Length

Function
Hash

Digest

 Message

Figure 1.14: Operation of a Hash Function

The basic requirements of a hash function are as listed below.

• It is a one-way function.

• It must be easily computable.

• The output must be of fixed length.

1.3.2 Message Authentication Code(MAC)

MAC is basically a function which takes a secret key and a message of arbitrary length as input

and gives out a unique fixed length MAC as output. MACs help to assure the message’s ori-

gin(authentication) and also detect any changes in the message(integrity). Operation of MAC is

similar to that of a hash. Figure 1.15 explain the operation of a MAC algorithm

8

www.manaraa.com

 Message

Fixed length

Arbitrary Length

Secret

Key

Function
MAC

MAC

Figure 1.15: Operation of a MAC Function

The basic requirements of a MAC are as listed below

• It should contain a key.

• Fixed length output.

• It must be computationally easy.

The security requirement of a MAC algorithm is that it must be computationally infeasible to

calculate m’ and MAC(m’) with m and MAC(m) given such that m’, m are different.

Construction of MACs

A MAC can be built from a hash function or a block cipher. Based on the way they are built there

are two types of MACs

1. Hash function based MACs.

2. Block cipher based MACs.

Hash Function Based MACs

A hash function based MAC is a function that is constructed with a combination of cryptographic

hash function and a secret key (K). It takes a message (m) of arbitrary length and a secret key as

inputs and return the fixed length MAC as output. Figure 1.16 explain the operation of a HMAC

9

www.manaraa.com

function. Given a cryptographic hash function H, opad is the outer padding, ipad is the inner

padding and | denotes concantenation then the definition of HMAC is

HMAC(K,m) = H((K xor opad) | H ((K ⊕ ipad)|m)).

=

KEY

ipad

Fixed length

HMAC (m)

KEY’

 h

 h

=

KEY

opad

 message m

KEY’’

Figure 1.16: Operation of a HMAC Function

Goals of HMAC

The goals of HMAC are listed below:

• The underlying hash function must be easily replaced with the latest and secure hash function.

• Use the hash fucntions that are readily available without any modifications.

Block Cipher Based MACs

A message authentication code can also be built using a block cipher as the underlying primitive.

1. Cipher Block Chaining Message Authentication Code (CBC-MAC)

10

www.manaraa.com

K K K
 E E E E

K

0

MAC

M[0] M[1] M[n−1] M[n]

Figure 1.17: Operation of the CBC-MAC Algorithm

Operation of CBC-MAC

The MAC of the message is calculated by encrypting the message using a block cipher in CBC

mode with an initialization vector of all zeros. The output of the first encryption is XORed

with the next message block. This kind of structure ensures that a change in any bit of the

plaintext will cause change in the final output. In CBC-MAC the length of the message has to

be a multiple of n where n is the block size of the underlying block cipher. Figure 1.17 explain

the operation of CBC-MAC.

2. Parallelizable Message Authentication Code(PMAC)

11

www.manaraa.com

Pad

M[n]

KKK

1L
2L (n−1)L

........................

M[n−1]M[1]M[0]

 E E E

K
E

MAC

Figure 1.18: Operation of the PMAC Algorithm

Operation of PMAC

The inputs to the PMAC algorithm are a key (K) with k bits length, message (M) of length n

bits. It uses three operations which are addition , multiplication and final. L is calculated by

encrypting a string of zeros of length n and adding the output with a string of all zeros and

least significant bit fixed to zero and final (L) is 1’s compliment of L. Each block of message

is added with iL for i ≥ 1. The operation of PMAC is illustrated in the figure 1.18

1.4 Authenticated Encryption

This section introduces the topic of Authenticated Encryption and focuses on it’s advantages and

different composition schemes.

1.4.1 What is Authenticated Encryption?

Authenticated encryption (AE) is primarily a combination of authentication and encryption that

provides both privacy and authenticity of the data that is encapsulated. Any scheme that provides

authenticated encryption takes the input plaintext (m), and key (K) and provides ciphertext (C) and

12

www.manaraa.com

a tag (T) as output. Tag is considered as a checksum of the message and is used to check whether

the correct ciphertext is received. Another class of AE schemes is authenticated encryption with

associated data (AEAD) which supports both data that needs encryption along with authentication

and data that only needs authentication. Figure 1.19 shows the basic block of an AEAD algorithm.

Associated Data

with

Encryption

Authenticated

Tag

Message

Secret

(Optional)
Number

Public

Message
Number

Secret Key

Plaintext Associated Data

Ciphertext

Figure 1.19: Authenticated Encryption with Associated Data

1.4.2 Advantages of Authenticated Encryption

Combining authentication and encryption into one single algorithm in hardware might possibly

provide the advantages listed below.

• Area requirement could be smaller for a single algorithm there by reducing the cost.

• Designs with smaller area requirement consume less power there by it is a good solution for

low-power applications.

• A combined algorithm needs only a single key and so has a slight advantage in the issues of

key management and key storage.

13

www.manaraa.com

1.4.3 Composition Schemes

Any AE scheme is basically a combination of an encryption algorithm and an authentication algo-

rithm. There are three types of composition schemes for achieving authenticated encryption and

they differ in the way these two algorithms are combined.

1. Encrypt-then-MAC(EtM)

In this scheme a message is first encrypted and the tag is calculated by taking the MAC

over the obtained ciphertext. And on the receiver's side first the tag gets verified and if it

matches decryption will take place to get the plaintext. Figure 1.20 shows the operation of

EtM composition scheme.

Output

Encryption MAC

 M

 C Tag

Figure 1.20: Operation of EtM

2. MAC-then-Encrypt(MtE)

In this scheme first the tag is calculated by taking the MAC over the message. The obtained is

tag is then appended to the message and tjhe resultant is ecncrypted to generate the ciphertext.

And on the receiver's side first decryption will takes place to get plaintext and tag pair and

then verifies the tag. Figure 1.21 shows the operation of MtE composition scheme.

14

www.manaraa.com

M

Encryption

 Tag M

 MAC

Output

Figure 1.21: Operation of MtE

3. Encrypt-and-MAC (E&M)

The message is encrypted to get the ciphertext and the tag is also calculated on the original

message. And on the receiver's side first decryption takes place to get the plaintext and then

verifies the tag. Figure 1.22 shows the operation of E&M composition scheme.

 M M

 Tag C

Encryption MAC

Output

Figure 1.22: Operation of E&M

15

www.manaraa.com

Chapter 2: Classification of the CAESAR Candidates

In this chapter we first discuss CAESAR (Competition for Authenticated Encryption: Security,

Applicability, and Robustness) and it’s requirements. Later, we characterize all submissions under

certain features.

2.1 Introduction

CAESAR has called for submissions of authenticated ciphers on 2/1/2014. The interest of the

competition mainly lies in finding a cipher that has advantages over AES-GCM and is suitable for

a very wide range of applications. The competition has certain requirements that every submission

must comply with.

2.1.1 Functional Requirements of the CAESAR Competition

The requirements of CAESAR competition are listed [2]:

• The cipher must provide both integrity and confidentiality to Plaintext and Secret message

number and also integrity to Associated data and Public message number i.e., the cipher

must be Authenticated Encryption with Associated Data(AEAD), which is a special case of

Authenticated Ciphers.

• Ciphers must not leak any information other than the length of plain text via the length of

cipher text.

• The submission must clearly specify the recommended parameters. The number of recommen-

dations must not exceed 10.

• It must be possible to recover the plaintext and the secret message number from the ciphertext,

associated data, public message number, and key.

16

www.manaraa.com

2.2 Design Classification

The Round 1 submissions include a variety of designs. The characteristics of the candidates are

discussed in this section.

2.2.1 Type

An Authenticated Cipher can be based on Block Ciphers, Tweakable Block ciphers, Stream Ciphers

or Permutations. Some submissions are a combination of two or more types.

Block Cipher

A block cipher is one of the methods of encrypting a plain text to produce the corresponding cipher

text in which the key and algorithm are applied block wise rather than to single bit at a time. The

block cipher takes key K and plaintext M as input and returns ciphertext C as the output. Figure

2.1 shows how a block cipher works.

Block Cipher

M1,M2,M3,..............,Mn

1 2 3,.............., nC ,C ,C C

K

Figure 2.1: Block Cipher

Stream Cipher

In a stream cipher a sequence of plaintext digits m is encrypted into a sequence of ciphertext c

digits. Unlike block ciphers, the key K and algorithm are applied bit wise. Figure 2.2 shows how a

stream cipher works.

17

www.manaraa.com

Stream Cipher

 Internal State

2 3,.............., n

1 2 3,.............., nm ,m ,m m

 c 1 , c , c c

K

Figure 2.2: Stream Cipher

Permutation Based

Few candidates of CAESAR uses a fixed length permutation as their underlying structure.

Tweakable Block Cipher

Tweak is formed by concatenating public parameters, block counters and some cipher dependent

parameters, for example a string of bits. Tweak is often used to generate tweakey (formed by

concatenating tweak with key), which is used for encryption. Figure 2.3 shows how a tweakable

block cipher works.

Block Cipher
Tweak

Tweakable

M1,M2,M3,..............,Mn

1 2 3,.............., nC ,C ,C C

Key

Figure 2.3: Tweakable Block Cipher

18

www.manaraa.com

2.2.2 Features

1. An AE scheme can be called as parallelizable if they are not sequential and can offer a possibility

for parallelizing the computations between distinct block cipher calls. In an AE scheme either

the encryption, the decryption or both can be parallelizable.

• Parallelizable Encryption In any AE scheme, if processing of the ith plaintext block

doesn’t depend on jth plaintext block for i 6= j then the encryption of that particular AE

scheme is parallelizable.

• Parallelizable Decryption In any AE scheme, if processing of the i th cipher text block

doesn’t depend on jth cipher text block for i 6= j then the decryption of that particular

AE scheme is parallelizable.

2. Online: A cipher is called online if the encryption of i -th input block Mi depends only on the

previous blocks M1, . . . , Mi−1 [4].

3. Inverse free: If an AE scheme only requires either encryption or decryption then it can be

called as an Inverse free AE scheme. Inverse free schemes requires low memory and area.

4. Masking: Some of the block cipher based AE schemes mask the inputs and output for ad-

ditional security. There are three types of masking methods that are adopted by the AE

schemes.

• AX: Addition and XOR arbitrary input.

• Doubling: Inputs and outputs are XORed with a variable which is key dependent and is

incremented by doubling in Galois Field.

• Galois-Field Multiplication (GFM): Inputs and outputs are multiplied in Galois-Field

with a variable that depends on the key.

5. Passes: The AE schemes can be classified into one pass and two pass depending on the way

they treat the data:

19

www.manaraa.com

One-pass: One pass mode executes encryption and authentication at the same time.

Two-pass: Two-pass mode executes one algorithm first and then executes another.

6. Tag Verification type: There are two options to verify a tag, it can be done before the

decryption or after the decryption is done. The verification type depends on the composition

scheme they follow and there are three different composition schemes

• Encrypt-then-MAC (EtM) As discussed in 1 the tag is verified before the decryption

if the tag doesn't match, the decryption will not take place.

• MAC-then-Encrypt (MtE) and Encrypt-and-MAC (EM) As discussed in 2 3 the

tag is verified after the decryption is done.

Table 2.1 shows the classification of CAESAR Round 2 candidates and table 2.2 shows the

Round1 candidates that did not advance to Round 2.

20

www.manaraa.com

Table 2.1: Classification of CAESAR Round Two candidates

C
a
n
d
id

a
te

T
y
p

e
P

r
im

it
iv

e
M

o
d
ifi

e
d

P
a
r
a
m

e
te

r
s

F
e
a
tu

r
e
s

Masking

TagSize

KeySize

Block/StateSize

PMNSize

WordSize

MaxAD/Msize

Rounds

ParallelizableE/D

Modeofoperation

OnlineE/D

Inversefree

Passes

Verification

A
C

O
R

N
v
1
v
2
[5

0
]

S
C

L
F

S
R

b
it

b
a
se

d
F

S
R

1
2
8

1
2
8

1
/
2
9
3

1
2
8

<
2
6
4
/
<

2
6
4

1
0
•/
•

–
–
/
–

•
2

M
tE

A
E

G
IS

v
1
[2

4
]

B
C

A
E

S
la

st
ro

u
n

d
n

o
t

u
se

d
1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

≤
2
6
4
/
≤

2
6
4

9
•/
•

–
–
/
–

•
2

M
tE

A
E

S
-C

O
P

A
v
1
v
2
[7

]
B

C
A

E
S

D
6
4
|3

2
|1

6
1
2
8

1
2
8

1
2
8

V
/
V

•/
•

–
•/
•

•
2

M
tE

A
E

S
-J

A
M

B
U

v
1
v
2
[2

5
]

B
C

A
E

S
,J

A
M

B
U

6
4

1
2
8

1
2
8

6
4

<
2
6
4
/
<

2
6
4

–
/
–

–
–
/
–

•
2

M
tE

A
E

S
-O

T
R

v
1
v
2
[3

9
]

B
C

A
E

S
D

9
6

1
2
8

1
2
8

9
6

≤
2
6
4
/
≤

2
6
4

◦/
◦

–
•/
•

•
1

E
M

A
E

Z
v
1
v
3
v
4
[2

2
]

B
C

A
E

S
k
ey

sc
h

ed
u

li
n

g
1
2
8

1
2
8

1
2
8

9
6

V
/
V

•/
•

–
–
/
–

•
2

M
tE

A
S

C
O

N
v
1
v
1
.1

[1
7
]

P
M

o
n

k
ey

D
u

p
le

x
o
w

n
p

er
m

u
ta

ti
o
n

1
2
8

1
2
8

6
4
/
3
2
0

1
2
8

6
4

<
2
6
4
/
<

2
6
4

2
0

–
/
–

–
•/
•

•
2

M
tE

C
L

O
C

v
1
v
2

[2
7
]

B
C

A
E

S
6
4

1
2
8

1
2
8

9
6

8
V

/
V

–
/
–
•

•/
•

•
2

E
tM

C
L

O
C

v
1
v
2

[2
7
]

B
C

T
W

IN
E

3
2

8
0

6
4

4
8

8
V

/
V

–
/
–
•

•/
•

•
2

E
tM

D
eo

x
y
s

v
1
v
1
.3

[3
0
]

T
B

C
D

eo
x
y
s-

B
C

R
o
u

n
d

tw
ea

k
ey

o
p

er
a
ti

o
n

1
2
8

1
2
8
|2

5
6

1
2
8

6
4

1
2
8

V
/
V

1
4
•/
•

–
–
/
–

–
2

M
tE

E
L

m
D

v
1

v
2
.0

[1
6
]

B
C

A
E

S
E

n
cr

y
p

t-
m

ix
-E

n
cr

y
p

t
D

1
2
8

1
2
8

1
2
8

6
4

≤
2
6
4
/
≤

2
6
4

1
2
•/
•

–
•/
•

•
2

M
tE

H
S

1
-S

IV
v
1
v
2

[3
5
]

H
S

1
P

R
F

1
2
8

2
5
6

2
5
6

9
6

3
2

V
/
V

2
0
•/
•
•

–
/
–

•
2

M
tE

IC
E

P
O

L
E

v
1
v
2

[4
0
]

P
S

p
o
n

g
e

o
w

n
p

er
m

u
ta

ti
o
n

1
2
8

1
2
8

1
2
8
0

1
2
8

6
4

1
2
•/
•

–
•/
•

•
2

M
tE

J
o
lt

ik
v
1
v
1
.3

[3
1
]

T
B

C
J
o
lt

ik
-B

C
6
4

1
2
8

6
4

3
2

4
V

/
V

2
4
•/
•

–
•/
•

–
2

M
tE

K
et

je
J
R

v
1

[9
]

P
K

E
C

C
A

K
-p

[2
0
0
]

v
a
ri

a
b

le
ta

g
le

n
g
th

1
2
8

≤
1
8
2

1
6
/
2
0
0

1
2
8

V
/
V

1
2

–
/
–

–
•/
•

•
2

M
tE

K
et

je
S

R
v
1

[9
]

P
K

E
C

C
A

K
-p

[4
0
0
]

v
a
ri

a
b

le
ta

g
le

n
g
th

9
6

≤
3
8
2

3
2
/
4
0
0

8
0

V
/
V

1
2

–
/
–

–
•/
•

•
2

M
tE

K
ey

a
k

v
1

v
2

[1
0
]

P
K

E
C

C
A

K
-p

[8
0
0
,1

6
0
0
]

k
ey

st
re

a
m

g
en

er
a
ti

o
n

1
2
8

≤
2
0
3
1

5
4
4
/
8
0
0

1
2
8

8
V

/
V

•/
•

–
•/
•

•
2

M
tE

M
in

a
lp

h
er

v
1

v
1
.1

[4
5
]

T
B

C
T

E
M

1
2
8

1
2
8

/
2
5
6

1
0
4

4
<

2
1
0
4
-1

/
<

2
1
0
4
-1

1
7
•/
•
•

–
/
–

–
2

E
tM

M
O

R
U

S
v
1

v
1
.1

[5
1
]

L
R

X
1
2
8

1
2
8
|2

5
6

1
2
8
/
6
4
0
|1

2
8
0

1
2
8

3
2

<
2
6
4
/
<

2
6
4

1
0

–
/
–

–
•/
•

•
2

M
tE

N
O

R
X

v
1
v
2

[3
3
]

P
M

o
n

k
ey

D
u

p
le

x
,R

X
p

a
d

d
in

g
1
2
8
|2

5
6

1
2
8
|2

5
6

1
2
8
/
5
1
2
|1

0
2
4

6
4
|1

2
8

3
2
|6

4
V

/
V

≤
6
3
◦/
◦

–
•/
•

•
2

M
tE

O
C

B
v
1

[3
6
]

B
C

A
E

S
h

a
sh

in
g

D
9
6
|1

2
8

1
9
2
|2

5
6

1
2
8

1
2
8

1
2
8

V
/
V

•/
•

–
•/
•

–
2

M
tE

O
M

D
v
1
.0

v
2
.0

[1
5
]

C
F

S
H

A
-2

5
6
,S

H
A

-5
1
2

3
2
-2

5
6

1
2
8
-2

5
6

2
5
6

9
6
-2

5
6

3
2

V
/
V

–
/
–
•

•/
•

•
2

M
tE

P
A

E
Q

v
1

[1
1
]

P
P

P
A

E
,A

E
S

Q
P

er
m

u
ta

ti
o
n

1
6
0
|5

1
2

1
2
8
|1

6
0

3
6
8
/
1
2
8

1
2
8
|9

6
3
2

V
/
V

2
0
•/
•

–
–
/
–

•
2

M
tE

Π
-C

ip
h

er
v
1

v
2

v
2
.0

[1
8
]

P
tr

ip
le

x
2
5
6
|5

1
2

1
2
8
|2

5
6

5
1
2
/
2
5
6

3
2
|1

2
8

1
6
|3

2
|6

4
<

2
6
4
-1

/
<

2
6
4
-1

4
•/
•

–
•/
•

•
2

M
tE

P
O

E
T

v
1

v
2
.0

[3
]

B
C

E
C

B
a
p

p
li

es
e-

A
X

U
fu

n
ct

io
n

1
2
8

1
2
8

1
2
8

1
2
8

V
/
V

1
8
•/
•

–
•/
•

•
1

E
M

P
R

IM
A

T
E

S
v
1

v
1
.0

2
[6

]
P

P
R

IM
A

T
E

o
w

n
p

er
m

u
ta

ti
o
n

1
6
0
|2

4
0

8
0
|1

2
0

4
0
/
2
0
0
|2

8
0

1
2
0
|1

6
0
|2

4
0

V
/
V

6
|1

2
–
/
–

–
•/
•

•
1

E
M

S
C

R
E

A
M

v
1

v
3

[1
9
]

T
B

C
T

A
E

k
ey

sc
h

ed
u

li
n

g
1
2
8

1
2
8

1
2
8

9
6

1
6

V
/
V

•/
•

–
•/
•

•
2

M
tE

S
H

E
L

L
v
1
v
2
.0

[4
9
]

B
C

A
E

S
,A

E
S

[4
]

p
er

m
u

ta
ti

o
n

s
D

1
2
8

1
2
8

1
2
8

6
4
|8

0
<

2
6
3
/
<

2
6
3

1
0
•/
•
•

•/
•

–
2

M
tE

S
IL

C
v
1

v
2

[2
8
]

B
C

A
E

S
6
4

1
2
8
,8

0
1
2
8

9
6

1
6

<
2
6
4
-1

/
<

2
6
4
-1

1
0

–
•

•/
•

•
2

E
tM

S
IL

C
v
1
v
2

[2
8
]

B
C

P
R

E
S

E
N

T
6
4

8
0

1
2
8

4
8

1
6

<
2
6
4
-1

/
<

2
6
4
-1

1
0

–
•

•/
•

•
2

E
tM

S
IL

C
v
1

v
2

[2
8
]

B
C

L
E

D
6
4

8
0

1
2
8

4
8

1
6

<
2
6
4
-1

/
<

2
6
4
-1

1
0

–
•

•/
•

•
2

E
tM

S
T

R
IB

O
B

v
1

v
2

[4
4
]

P
S

p
o
n

g
e

o
w

n
p

er
m

u
ta

ti
o
n

1
2
8

1
9
2

2
5
6

1
2
8

8
V

/
V

1
2
•/
•

–
•/
•

•
2

M
tE

T
ia

o
x
in

v
1

v
2

[4
1
]

B
C

A
E

S
1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

<
2
1
2
8
-1

/
<

2
1
2
8
-1

3
5
•/
•

–
•/
•

•
2

M
tE

T
ri

v
ia

-c
k

v
1
v
2

[1
4
]

S
C

T
ri

v
ia

-S
C

k
ey

g
en

er
a
ti

o
n

1
2
8

1
2
8

6
4
/
3
8
4

6
4

3
2

V
/
V

–
–

–
/
–

•
2

M
tE

21

http://competitions.cr.yp.to/round1/acornv1.pdf
http://competitions.cr.yp.to/round2/acornv2.pdf
http://competitions.cr.yp.to/round1/aegisv1.pdf
http://competitions.cr.yp.to/round1/aescopav1.pdf
http://competitions.cr.yp.to/round2/aescopav2.pdf
http://competitions.cr.yp.to/round1/aesjambuv1.pdf
http://competitions.cr.yp.to/round2/aesjambuv2.pdf
http://competitions.cr.yp.to/round1/aesotrv1.pdf
http://competitions.cr.yp.to/round2/aesotrv2.pdf
http://competitions.cr.yp.to/round1/aezv1.pdf
http://web.cs.ucdavis.edu/~rogaway/aez/AEZv3.pdf
http://competitions.cr.yp.to/round2/aezv4.pdf
http://competitions.cr.yp.to/round1/asconv1.pdf
http://competitions.cr.yp.to/round2/asconv11.pdf
http://competitions.cr.yp.to/round1/clocv1.pdf
http://competitions.cr.yp.to/round2/clocv2.pdf
http://competitions.cr.yp.to/round1/clocv1.pdf
http://competitions.cr.yp.to/round2/clocv2.pdf
http://competitions.cr.yp.to/round1/deoxysv1.pdf
http://competitions.cr.yp.to/round2/deoxysv13.pdf
http://competitions.cr.yp.to/round1/elmdv10.pdf
http://competitions.cr.yp.to/round2/elmdv20.pdf
http://competitions.cr.yp.to/round1/hs1sivv1.pdf
http://competitions.cr.yp.to/round2/hs1sivv2.pdf
http://competitions.cr.yp.to/round1/icepolev1.pdf
http://competitions.cr.yp.to/round2/icepolev2.pdf
http://competitions.cr.yp.to/round1/joltikv1.pdf
http://competitions.cr.yp.to/round2/joltikv13.pdf
http://competitions.cr.yp.to/round1/keitalic text latextjev1.pdf
http://competitions.cr.yp.to/round1/ketjev1.pdf
http://competitions.cr.yp.to/round1/keyakv1.pdf
http://competitions.cr.yp.to/round2/keyakv2.pdf
http://competitions.cr.yp.to/round1/minalpherv1.pdf
http://competitions.cr.yp.to/round1/minalpherv1.pdf
http://competitions.cr.yp.to/round1/morusv1.pdf
http://competitions.cr.yp.to/round2/morusv11.pdf
http://competitions.cr.yp.to/round1/norxv1.pdf
http://competitions.cr.yp.to/round2/norxv20.pdf
http://competitions.cr.yp.to/round1/ocbv1.pdf
http://competitions.cr.yp.to/round1/omdv10.pdf
http://competitions.cr.yp.to/round2/omdv20.pdf
http://competitions.cr.yp.to/round1/paeqv1.pdf
http://competitions.cr.yp.to/round1/picipherv1.pdf
http://competitions.cr.yp.to/round1/picipherv2.pdf
http://competitions.cr.yp.to/round2/picipherv20.pdf
http://competitions.cr.yp.to/round1/poetv101.pdf
http://competitions.cr.yp.to/round2/poetv20.pdf
http://competitions.cr.yp.to/round1/primatesv1.pdf
http://competitions.cr.yp.to/round1/primatesv102.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf
http://competitions.cr.yp.to/round2/screamv3.pdf
http://competitions.cr.yp.to/round1/shellv1.pdf
http://competitions.cr.yp.to/round2/shellv20.pdf
http://competitions.cr.yp.to/round1/silcv1.pdf
http://competitions.cr.yp.to/round2/silcv2.pdf
http://competitions.cr.yp.to/round1/silcv1.pdf
http://competitions.cr.yp.to/round2/silcv2.pdf
http://competitions.cr.yp.to/round1/silcv1.pdf
http://competitions.cr.yp.to/round2/silcv2.pdf
http://competitions.cr.yp.to/round1/stribobr1.pdf
http://competitions.cr.yp.to/round2/stribobr2.pdf
http://competitions.cr.yp.to/round1/tiaoxinv1.pdf
http://competitions.cr.yp.to/round2/tiaoxinv2.pdf
http://competitions.cr.yp.to/round1/triviackv1.pdf
http://competitions.cr.yp.to/round2/triviackv2.pdf

www.manaraa.com

Table 2.2: Classification of CAESAR Round One Candidates

C
a
n

d
id

a
te

T
y
p

e
P

r
im

it
iv

e
M

o
d

ifi
e
d

P
a
r
a
m

e
te

r
s

F
e
a
tu

r
e
s

Masking

TagSize

KeySize

Block/StateSize

PMNSize

wordSize

MaxAD/Msize

Rounds

ParallelizableE/D

Modeofoperation

OnlineE/D

Inversefree

Passes

Verification

+
+

A
E

v
1
[4

3
]

B
C

IO
B

C
,I

O
C

u
se

s
b

it
st

ea
li
n

g
A

X
1
2
8

1
2
8

1
2
8

6
4

6
4

<
2
6
4
/
<

2
6
4

•/
•

–
–
/
–

–
2

M
tE

A
E

S
-C

M
C

C
v
1
.1

[4
7
]

B
C

C
B

C
C

M
A

C
p

a
d

d
in

g
1
2
8

1
2
8

1
2
8

3
2
|1

6
<

2
6
4
/
<

2
6
4

1
0

•/
•

•
–
/
–

–
2

E
tM

A
E

S
-C

P
F

B
v
1
[3

8
]

B
C

A
E

S
1
2
8

1
2
8

1
2
8

9
6

<
2
3
5
-1

/
<

2
6
7
-1

1
0

•/
–

•
•/
•

•
2

M
tE

A
rt

em
ia

v
1

[2
9
]

P
J
H

A
E

p
a
d

d
in

g
1
2
8
|2

5
6

1
2
8
|2

5
6

1
2
8
|2

5
6

1
2
8

V
/
V

–
/
–

–
•/
•

•
1

E
M

A
V

A
L

A
N

C
H

E
v
1

[5
]

B
C

A
E

S
,P

C
M

A
C

k
ey

sc
h

ed
u

li
n

g
1
2
8

4
4
8

1
2
8

1
2
8

≤
1
2
8
(2

4
8
-1

)/
N

C
•/
•

–
•/
•

•
1

E
M

C
B

A
v
1
.1

[2
6
]

B
C

A
E

S
D

6
4
|3

2
|9

6
1
2
8

1
2
8

9
6

≤
2
6
4
/
≤

2
6
4

•/
•

•
•/
•

•
1

E
M

E
n

ch
il

a
d

a
-1

2
8

v
1
.1

[2
1
]

S
C

,B
C

C
h

a
C

h
a
,R

ij
n

d
a
el

w
h

it
en

ed
R

ij
n

d
a
el

1
2
8

2
5
6

1
2
8
|2

5
6

6
4

≤
2
6
4
/
≤

2
6
4

1
2
,1

0
•/
•

–
•/
•

•
2

M
tE

E
n

ch
il

a
d

a
-2

5
6

v
1
.1

[2
1
]

S
C

,B
C

C
h

a
C

h
a
,

R
ij

n
d

a
el

w
h

it
en

ed
R

ij
n

d
a
el

1
2
8

2
5
6

2
5
6

6
4

≤
2
6
4
/
≤

2
6
4

2
0
,1

4
•/
•

•
•/
•

•
2

M
tE

if
ee

d
[A

E
S

]
v
1

[5
5
]

B
C

A
E

S
P

M
A

C
fo

r
ta

g
g
en

er
a
ti

o
n

D
1
2
8

1
2
8

1
2
8

9
6

6
4

•/
–

•
•/
•

•
2

M
tE

J
u

li
u

s
v
1

[8
]

B
C

A
E

S
C

T
R
|E

C
B

p
re

co
m

p
u

ta
ti

o
n

s
G

1
2
8

1
2
8

1
2
8

9
6

≤
2
6
4
-1

/
≤

2
6
4
-1

•/
•

•
–
/
–
•
|–

2
M

tE

K
IA

S
U

v
1

[3
2
]

T
B

C
K

IA
S

U
-B

C
1
0
*
p

a
d

d
in

g
1
2
8

1
2
8

1
2
8

3
2

V
/
V

1
1

•/
•

–
•/
•

–
2

M
tE

L
A

C
v
1

[5
4
]

B
C

A
E

S
,

L
B

lo
ck

-s
n

o
re

u
se

o
f

ro
u

n
d

k
ey

s
6
4

8
0

1
/
1
4
4

6
4

V
/
V

–
/
–

–
•/
•

–
1

E
M

P
R

O
S

T
v
1
.1

[3
4
]

P
P

R
O

S
T

1
2
8
|2

5
6

1
2
8
|2

5
6

6
4
|1

2
8
/
2
5
6
|5

1
2

6
4
|1

2
8

V
/
V

1
6
|1

8
•/
•

–
•/
•

•
2

M
tE

R
a
v
iy

o
y
la

v
1

[4
8
]

S
C

M
A

G
v
2
,r

a
n

d
o
m

fu
n

ct
io

n
1
2
8

2
5
6

1
2
8

1
2
8

V
/
V

–
/
–

–
–
/
–

•
2

M
tE

S
a
b

li
er

v
1

[5
3
]

S
C

L
F

S
R

in
te

rn
a
l

st
a
te

3
2

8
0

2
0
8

8
0

1
6

<
2
1
9
/
<

2
1
9

6
4

–
/
–

–
–
/
–

•
2

M
tE

S
il
v
er

v
1

[4
2
]

B
C

A
E

S
k
ey

sc
h

ed
u

li
n

g
1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

<
2
5
0
-1

/
<

2
5
0
-1

1
0

•/
•

–
•/
•

–
2

M
tE

W
h

ee
sh

t
v
1

[3
7
]

S
C

m
o
d

u
la

r
a
d

d
it

io
n

,r
o
ta

ti
o
n

,X
O

R
N

o
S

-B
o
x

2
5
6

5
1
2

2
5
6
/
5
1
2

1
2
8

V
/
V

•/
•

–
–
/
–

•
2

M
tE

Y
A

E
S

v
1

v
2

[1
2
]

B
C

A
E

S
U

se
s

tw
ea

k
ed

C
T

R
1
2
8

1
2
8

1
2
8

1
2
7

≤
2
5
1

1
0

•/
•

–
•/
•

•
2

M
tE

22

http://competitions.cr.yp.to/round1/aev10.pdf
http://competitions.cr.yp.to/round1/aescmccv11.pdf
http://competitions.cr.yp.to/round1/aescpfbv1.pdf
http://competitions.cr.yp.to/round1/artemiav1.pdf
http://competitions.cr.yp.to/round1/avalanchev1.pdf
http://competitions.cr.yp.to/round1/cbav11.pdf
http://competitions.cr.yp.to/round1/enchiladav11.pdf
http://competitions.cr.yp.to/round1/enchiladav11.pdf
http://competitions.cr.yp.to/round1/ifeedaesv1.pdf
http://competitions.cr.yp.to/round1/juliusv10.pdf
http://competitions.cr.yp.to/round1/kiasuv1.pdf
http://competitions.cr.yp.to/round1/lacv1.pdf
http://competitions.cr.yp.to/round1/proestv11.pdf
http://competitions.cr.yp.to/round1/raviyoylav1.pdf
http://competitions.cr.yp.to/round1/sablierv1.pdf
http://competitions.cr.yp.to/round1/silverv1.pdf
http://competitions.cr.yp.to/round1/wheeshtv03.pdf
http://competitions.cr.yp.to/round1/yaesv1.pdf
http://competitions.cr.yp.to/round1/yaesv2.pdf

www.manaraa.com

Legend

• Type

– BC: Block Cipher

– SC: Stream Cipher

– P: Permutation
– CF: Compression function

– TBC: Tweakable block cipher

• Primitve

– LRX: Logical operations, Rotation
and XOR

– AX: Addition and XOR.

• Masking

– D: Doubling

– AX: Addition and XOR.
– GFM: Galois-Field Multiplication

• Features

– NC: No Constraint.

– • Yes

– –: No

– •/•: Fully/Fully

– V/V: Variable/Variable

– ◦/ ◦: Partly/Partly

– –/–: No/No

• Verification Type

– MtE: MAC then Encrypt

– EtM: Encrypt then MAC

– EM: Encrypt and MAC

23

www.manaraa.com

Chapter 3: Design Decisions

3.1 Candidate Selection

From all the candidates submitted at CAESAR we have chosen SILC, ACORN and Joltik as all the

3 candidates are lightweight. These 3 candidates are a variety of design in the sense that they are

based on different kinds of cipher. SILC is block cipher based, Joltik is tweakable block cipher based

and ACORN is stream cipher based. So, implementing these 3 candidates will cover almost all the

design types submitted at CAESAR.

3.2 Hardware Interface for Fullwidth Designs

The top level interface for all the candidates is the George Mason’s Hardware API for Authenticated

Ciphers [23]. The authenticated cipher interface has pre and post processors in it. These processors

receive and format the data into segments that can be used by ciphers, output. Using the interface the

cipher core designed for every candidate is wrapped with a wrapper which has Serial-input/parallel-

output (SIPO) and parallel-input/serial-output (PISO)in them,which allow fewer IO connections like

32 and 64 bits for public and secret data interfaces, which expands the available FPGA platforms

on which designs can be implemented. The authenticated cipher interface provides below mentioned

services

• 10* padding.

• Delimeters that provide information about end-of-input and end-of-text.

• Validates the decryption and verification of tag by buffering all the output until the ”msg auth valid”

signal is generated by the cryptographic core.

Figure 3.1 shows the top level hardware interface used for full width designs.

24

www.manaraa.com

CTR_D_SIZE

NPUB_SIZE
npubnpub

TAG_SIZE

sdi_ready

sdi

sdi_valid

b
y
p
a
s
s
_
fu

ll

b
y
p
a
s
s
_
w

r

KEY_SIZE

W

sdi

sdi_ready

pdi_ready

pdi

pdi_valid

sdi_valid

write

din

full empty

dout

read

FIFO

Bypass

DBLK_SIZE/8

DBLK_SIZE/8

bdi_decryptbdi_decrypt

nsec_readynsec_ready

bdi_pad_loc

bdi_valid_bytesbdi_valid_bytes

bdi_pad_loc

bdi_sizebdi_size

bdi_read bdi_read

exp_tag_ready exp_tag_ready

bdi_eot

bdi_eoi

bdi_eot

bdi_eoi

bdi_nodatabdi_nodata

BS_BYTES

bdi_proc

bdi_readybdi_ready

bdi_proc

bdi_adbdi_ad

nsec_readnsec_read

npub_readnpub_read

key_updated

key_needs_update

key_ready

key_needs_update

key_ready

key_updated

rdkey_ready

rdkey_read

rdkey_ready

rdkey_read

npub_ready npub_ready

W

W 4 W 3

do

do_ready

do_valid

do_ready

do

tag_ready

tag_write

msg_auth_valid

msg_auth_done

b
y
p
a
s
s
_
e
m

p
ty

b
y
p
a
s
s
_
rd

statusdoutctrldin

a
u
x
_
fifo

_
s
ta

tu
s

a
u
x
_
fifo

_
d
o
u
t

a
u
x
_
fifo

_
d
in

a
u
x
_
fifo

_
c
trl

b
y
p
a
s
s
_
d
a
ta

do_validProcessor

Post

AUX FIFO

bdo_nsec

bdo_size

bdo_ready

bdo_write

bdo_data tag_dataProcessor

Pre

Controller

CipherCore

Datapath

CipherCore

W

TAG_SIZE

len_a

len_d

len_a

len_d

exp_tag exp_tag

CTR_AD_SIZE

tag

bdo

bdibdi

keykey

rdkeyrdkey

nsecnsec
NSEC_SIZE

AEAD Core

CipherCore

pdi

pdi_valid

pdi_ready

DBLK_SIZE

RDKEY_SIZE

AEAD

SW

msg_auth_done

tag_ready

tag_write

msg_auth_valid

msg_auth_done

bdo_nsec

bdo_ready

bdo_write

bdo_size

DBLK_SIZE

BS_BYTES+1

Figure 3.1: Hardware Interface for Fullwidth Designs

3.3 Lightweight Interface

While optimizing the designs for lightweight applications we have used the 16-bit interface developed

by Pansayya Yalla of George Mason University. The interface has a common public data input (pdi)

port for associated data, nonce, plaintext, ciphertext and tag. An additional signal pdi type is used

to specify the type of data that is coming on the bus. The key and secret message number come

through the secret data input port. The data output port do carries the cipher text and tag. The

interface consists of the following modules:

• Pre-processor which takes the public data in and sends the corresponding signals to the cipher

core.

• A secret processor which takes the secret data in and passes the data to the cipher core. It

also passes the error code signals to the post processor.

25

www.manaraa.com

• Finally a post processor, which takes the signals coming from the cipher core and sends out

the data.

Figure 3.2 shows the top level hardware interface used for light-weight designs.

pdi_ready

pdi_valid

pdi
1616 pdi

pdi_valid

pdi_ready

di_ready

di_valid

di

sdi

sdi_ready

sdi_valid
sdi

sdi_valid

sdi_ready

do

do_valid

do_ready

error

ecode
4

16

4

do 16

do_valid

do_ready

error

ecode

clk

rst

16

clk rst

last_word

16

4

4

di_type

cerror

sdo

sdo_valid

sdo_ready

rst

clk 16

16

header header
16

h_valid h_valid
4

ecode

error

pecode

perror

cecode

4

error

ecode

pdo_ready

pdo_valid

pdo

fh_word

last_word

rstart

pdo_type
4

mode

rstart

fh_word_in

pdi_ready

pdi_valid

pdi

last_word_in

pdi_type

mode

get_keykey_pr

key_pr

key_id

4

get_key

key_id get_key

do_type

do_ready

do_valid

do

error

ecode

serror

secode

Tag_valid Tag_valid

clk rst

clk

rst

16 sdi

sdi_valid

sdi_ready

last_word_out

fh_word_out fh_word

CipherCore

Processor
Secret

Pre Processor

Post Processor

Figure 3.2: Hardware Interface for Lightweight Designs

3.4 Design Methodology

The implementations of all three candidates are developed using the specifications submitted to

CAESAR Round 2. The designs were written, synthesized, and implemented using VHDL and

Xilinx Webpack 14.7 ISE.

3.5 Functional Verification

The test vectors of all candidates are generated from the reference software implementations in

C using Microsoft Visual Studio 2013. The reference software implementations of the CAESAR

26

www.manaraa.com

candidates are obtained by downloading the entire SUPERCOP package. The test vectors generated

are given as inputs to the testbenches and outputs are verified to validate the functionality of all

the candidates. All the designs are verified using post place and route simulation.

3.6 Results Generation

The timing and resource utilization results are obtained by using Automated Tool For Hardware

Evaluation (ATHENA). The target families of Xilinx FPGA are Spartan6, Artix7 and Virtex6. We

have chosen these families as Spartan6 and Artix7 consume low power and are good to implement the

lightweight designs where as Virtex6 is highspeed and so good choice for fullwidth implementation

comparisons.

27

 http://hyperelliptic.org/ebats/supercop-20140910.tar.bz2
https://cryptography.gmu.edu/athena/index.php?id=source_codes/ceasr

www.manaraa.com

Chapter 4: SILC: SImple Lightweight CFB

In this chapter we present Our implementation of SILC. First, we will discuss the algorithm and in

the later section we discuss the hardware implementations.

4.1 Introduction

SILC (SImple Lightweight CFB (CipherFeedBack)) is a mode of operation with a block cipher as

the underlying base function. It is a lightweight function i.e., the hardware implementation cost is

very low. It is suitable for use in constrained hardware devices.

4.1.1 Features

SILC doesn't need much precomputation other than key scheduling so less hardware is needed there

by reducing computational cost. It also has low memory cost because it can work with two state

blocks [28]. The encryption and decryption operations of SILC can be done with the use of the

encryption function alone. Both encryption and decryption are online operations that means i -th

input block Mi depends only on the blocks M1,. . . ,Mi−1. It is inverse free which means it only

requires either encryption for both encryption and decryption operations. It is a two pass scheme

i.e., it executes authentication first and encryption later. It follows EtM composition scheme for

verification of the tag which means it verifies the tag before decryption.

4.1.2 Recommended Parameter Set

SILC takes the following three parameters

1. Block cipher (E).

2. Length of the nonce (lN).

3. Length of the tag (τ).

28

www.manaraa.com

Table 4.1 shows parameters recommended by designers of SILC and the respective param value.

Table 4.1: Recommended Parameter Set of SILC

Parameter set Block Cipher(E) Length of the nonce (lN) tag length (τ) param
aes128n12silcv1 AES-128 96 64 0xc0

aes128n8silcv1 AES-128 64 64 0xd0

present80n6silcv1 PRESENT-80 48 32 0xc4

led80n6silcv1 LED-80 48 32 0xc8

4.2 Encryption and Decryption

SILC uses fOur subroutines to perform the encryption and decryption operations:

1. HASH.

2. Encryption (ENC)

3. Psuedo Random Function (PRF)

4. Decryption (DEC)

These subroutines are covered in subsection 4.2.2. The subroutines use functions in their algorithm

which are covered in subsection 4.2.1.

4.2.1 Functions Used in SILC

Length adjusting functions “zap” (zero appending function) and “zpp”(zero prepending function)

are used to adjust the length of an input string to a non-negative multiple of n (n in the case of AES

is 128) bits. The bit fixing function “fix1” is used to set the most significant bit of the input to one.

The tweak function “g(X)” is defined as left shift with the rightmost output byte being the XOR

of the leftmost two input bytes. The Length encoding function “Len(X)” is the standard encoding

of the byte length of the string into bits of length n. The “msb” function is used to output the

most-significant bits of the input function.

29

www.manaraa.com

4.2.2 Subroutines Used in SILC

HASH Function

The HASH function takes key (K), nonce (N) concatenated with param, associated data (A) as the

inputs and returns intermediate tag (V) as the output. It encrypts the zero prepended nonce in the

case of an empty associated data string. In the case of a non empty associated data it encrypts the

XORed value of associated data with the previous encrypted value of associated data. The output

of the encryption function is then XORed with the length of the associated data and then sent to the

tweak function (g). It returns intermediate tag(V) as the output. Figure 4.1 explains the operation

of the HASH function. If the length of the associated data is zero then the part in the dotted box

is not executed.

Zpp

AES

Enc

A[1]

.........

AES
Enc

AES
Enc

AES
Enc

g

 V

Param || N

Zap

A[a]
A[a−1] Len(A)

Only if len (A)>0

Figure 4.1: HASH Function

PRF Function

The PRF function takes the intermediate tag (V) and ciphertext (C) as inputs and returns tag (T)

as output. First, the tweaked V is encrypted and then XORed with first block of the ciphertext.

The outputs are continuously sent as feedback to the next block encryption. The tag is generated

by taking the most significant 64 bits out of the tweak of last block’s encryption. In the case of

an empty ciphertext, the tag is generated by taking the most significant 64 bits of the output of

encryption of tweaked V. Figure 4.2 explain the operation of the PRF function. If the length of the

30

www.manaraa.com

ciphertext is zero then the part in the dotted box is not executed.

AES

.........

g

Zap

C[1] Len(C)
C[m−1]

C[m]

 V

AES
Enc

AES
Enc

Enc
AES

Enc

 g

msb

 Tag

 Only if len(C) > 0

AES
Enc

Figure 4.2: PRF Function

ENC Function

The ENC function takes the intermediate tag (V) and message (M) as inputs and returns ciphertext

(C) as output. If the length of the message is zero then the cipher text is a string of zeros. In the

case of a non-empty message, the first block of the cipher text is obtained by XORing the first block

of the message with encrypted output of the intermediate tag (V). To generate the ith cipher text

block the ith message block is XORed with encrypted value of the (i-1)th ciphertext by fixing it's

most significant bit to 1. Figure 4.3 explains the operation of the ENC function.

31

www.manaraa.com

C[2]

Enc
AES

C[m]C[m−1]

M[m]

C[1]

........

 M[m−1]M[1]V M[2]

msb

Enc
Enc
AES

 AES
Enc
AES

fix1
fix1

fix1

Figure 4.3: ENC Function

DEC Function

The DEC function takes the intermediate tag (V) and ciphertext (C) as the inputs and returns

message (M) as the output. If the length of the ciphertext is zero then the message output is a

string of zeros. In the case of a non-empty ciphertext the first block of the message is obtained

by XORing the first block of the ciphertext with encrypted output of the intermediate tag (V).

To generate the ith message block, ith block of the cipher text is eXORed with encrypted value of

(i-1)th ciphertext by fixing it's most significant bit to 1. Figure 4.4 explains the operation of the

DEC function.

32

www.manaraa.com

M[1] M[2] M[m] M[m−1]

C[2] C[m]C[m−1]C[1]

Enc
AES

........
V

msb

Enc
Enc
AES

 AES
Enc
AES

fix1
fix1

fix1

Figure 4.4: DEC Function

4.3 Fullwidth Implementation

Among the three recommended options I have chosen “aes128n12silcv1” for my implementation

as AES-Enc of AES uses less memory and fewer clock cycles when compared to LED and PRESENT

[13] and because using longer nonce will add extra security by reducing the reuse capability.

4.3.1 Datapath Design

1. Datapath design atthe Input side of the cipher

As can be seen from 4.5 the datapath, the input of the AES-Enc consists of a sequence of

multiplexers. The data block which is to be passed to the block cipher propagates through

the set of multiplexers and arrives at the input of the cipher. Multiplexer M1 selects between

fed bdo, which is given as feedback from the output side and bdi which can be either plaintext

or associated data. The multiplexer M2 selects between XORed feedback or fixed output

from multiplexer M1. The 4×1 multiplexer Mux din selects the input that goes into the

AES-ENC core It selects between nonce (IV), tweaked intermediate tag (g(V)), intermediate

tag (V) and the output of multiplexer M2. The inputs are sent into the AES-Enc core based

on the subroutines that need to be processed. For instance, if the HASH function needs to

33

www.manaraa.com

done_init

ready

key

din key
start start

init done_init

done done

AES−Enc

R2

R3

mux_din

IV

V
M1

M2

bdi

0
1

126

rst

dout

init

rst
ready

R1

Lenbdi

bdo
bdi

g

Tag msb
64

g

All buses are 128−bit wide unless indicated

Figure 4.5: Datapath Design of SILC

34

www.manaraa.com

take place to produce V when the length of associated data is zero then the select signal of

the multiplexers are activated in order to send the nonce as an input to AES-Enc core.

2. Datapath design at the output side of the cipher

At the output of the AES-Enc core two registers (R1,R2) are used to store the output of the

AES function. The output of R1 is then sent as a feedback to the input side. The output of

R1 is also sent to the g function after XORing it with Len (bdi). The output of the g function

is then stored into R3 and sent as a feedback to the input side. The output of R2 is XORed

with bdi to generate the cipher text. The ciphertext is then sent as feedback to input side.

Tag is generated by taking most significant 64 bits of register R1 output.

4.3.2 Design of Control Logic

Figure 4.6 shows the toplevel state machine of the SILC fullwidth design. Upon reset the controller

enters in the reset state. Then the state is changed to wait state in which the controller waits

until the data is given as input. This is indicated by turning the ready signal high. If there is a

need of updating the key then the roundkey generation is done. This is done by checking for the

“key needs update” signal. If this signal is low then the controller goes to the IV load state. The

controller stays in roundkey generation process until the done rkey signal is high. Once the signal

is high the next task is to load IV and process it. In this state the controller waits until the signal

iv ready is high. Once this is done, the controller waits until the bdi ready signal is high. After

the bdi ready is high the controller checks for bdi ad signal which indicates that the incoming data

is associated data. If the bdi ad signal is high then the next state is processing associated data.

In this state the controller waits for bdi eot signal which indicates that the associated data has

come to an end. If this signal is high then the next process is encryption/decryption. In this state

the controller again waits for the bdi eot. The controller takes 10 clock cycles each to process the

associated data and encryption/decryption. After encryption/decryption, the controller waits for

bdi eoi signal which denotes the end of information then the tag generation takes place.

35

www.manaraa.com

 Key_needs_update

IV_load
Roundkey

 ~Key_needs_update

Data

bdi_ready && ~bdi_ad bdi_ready && bdi_ad

Decryption

Encryption/

Process Associated

bdi_eot

S_RESET

Wait

rst Generation

key_ready && ready iv_ready done_rkey

&& bdi_eoibdi_eot

Generate Tag

Figure 4.6: Toplevel State Machine of SILC

Figure 4.7 shows the top level diagram of SILC fullwidth design. The names of the signals

represent there usage in the datapath. All the enable signals for registers and select signals for the

muxes used in the datapath are shown. The “zero a” and “zero b” signals that are given as input

to the controller are enabled based on the length of the data. The datapath and controller also gets

the signals from the pre and post processor of the fullwidth implementation (shown in 3.1. These

signals are shown on the top of the block. The outputs from datapath and controller are shown at

the bottom of the block.

36

www.manaraa.com

en_out1 en_out1

init1 init1

en_3 en_3

rst

k
e
y
_
re

a
d
y

b
d
i_

e
o
i

K
e
y
_
n
e
e
d
s
_
u
p
d
a
te

b
d
i_

s
iz

e

IV
_
re

a
d
y

b
d
i_

p
ro

c

b
d
i_

re
a
d
y

b
d
i_

d
e
c
ry

p
t

Clk

rst

b
d
i_

a
d

Tag bdo

e
x
p
_
ta

g

K
e
y

b
d
i

n
p
u
b

k
e
y
_
u
p
d
a
te

d

n
p
u
b
_
re

a
d

b
d
i_

re
a
d

m
s
g
_
a
u
th

_
d
o
n
e

b
d
o
_
w

ri
te

ta
g
_
w

ri
te

m
s
g
_
a
u
th

_
v
a
lid

Controller Datapath

le
n
_
a

le
n
_
d

zero_a zero_a

zero_d zero_d

SILC SILC

64 128 128
96

4 4

12864

Sel_2
Sel_1

sel_din1

Sel_2
Sel_1

sel_din1

en_out2 en_out 2

start start

Figure 4.7: Toplevel Structure of SILC

4.4 Lightweight Implementation

The main goal of the optimization is to reduce the area utilization by using a narrow datapath. This

section covers the changes made to the design in order to make it a lightweight version.

4.4.1 Datapath Design for Lightweight Implementation

The datapath used for lightweight implementation is 16-bit wide. The 128-bit AES-ENC core is

replaced by a compact 8-bit AES-ENC core. We have used the 8-bit version of AES as it uses a

very low area (<100 slices). And with the cost of just two clock cycles it can be interfaced with the

16-bit lightweight interface. Major designs changes from the full width version to the lightweight

version are given below:

• At the input side: As the datapath size is reduced to 8 bits, a register pair (R0, R1) and

multiplexer pair (M1, M5) is used to select between first and second byte of public and secret

37

www.manaraa.com

data. When using the compact AES core, key is needed to be given to the datain bus directly

so, an additional 8bit 4×1 is used to select between key, data and other strings that indicates

the type of input. Width of all the multiplexers was reduced to 8bits.

• At the output side: The 128-bit registers R1 and R2 are replaced with 64×6 DRAMs.

The register R3 which stores the intermediate tag(V) is removed and this operation is now

handled by using an additional multiplexer (M6) at the top of second DRAM. A counter is

added to the design in order to generate addresses for the DRAMs. The g function operation is

performed by using a 8bit register (R2) at the end of first DRAM. An additional multiplexer

(M7) is used to selected between tag and ciphertext. As the output of the interface is 16 bits

wide we need an additional register (R3) at the output side to store the first byte coming out

of the multiplexer.

38

www.manaraa.com

R
1

counter

counter

R
0

R
3

Mux_in

src_ready

dst_ready

dst_writesrc_ready

dst_ready src_read

Compact
AES

dataout

datain

1
6

dr
l_add

r_add

wr

wr

dr

0 6

add

4

M2

M4

M
5

M7

1

M3

drout2

drout1

8
1

50
7

R2

rstrst

Len

pdi

ddram2

M6

M10

M8
ddram1

l_add

r_add

2

0* 0*1

8
1

5

7 M
1

1
6

0

7

0

1
5

8

1
6

do

P
d
i

sdi

din_out

dataout

src_read

dst_write

All buses are 8−bit wide unless indicated

drout2 drout1

din_out

M
9

add

add

wr

wr

Figure 4.8: Lightweight Design of SILC

4.4.2 Design of Controller

The toplevel flow of controller of the lightweight design is shown in figure 4.9. The flow is similar to

that of the fullwidth design but the signals that controller check are different.The controller stays

in the “wait” state until the key is ready which means it waits until the sdi valid signal is high In

the “wait” if the get key is high then the roundkey generation takes place if not the IV is processed

directly. As the public data comes on a single bus in the lightweight interface, the signal pdi type is

39

www.manaraa.com

used to distinguish between the type of data coming in. The end of type signal “eot” is checked while

processing each type of data. Once the encryption/decryption is completed the controller checks for

last word in signal and if this signal is high the next process is to generate the tag.

IV_load
Roundkey

Generation

Data

Decryption

Encryption/

Process Associated

Generate Tag

S_RESET

Wait

eot

pdi_valid && pdi_type="0010"

pdi_valid && pdi_type="0011"

~eot

~eot

get_key

~sdi_ready

sdi_ready

~get_key
pdi_valid && pdi_type="0001"

~eot

eot

eot && last_word

sdi_valid
rstart

Figure 4.9: Toplevel State Machine of Our Lightweight Design of SILC

The toplevel structure of Our SILC lightweight design is shown in figure 4.10. The signals

exchanged between datapath and controller are shown. The controller for Our lightweight design

requires more clock cycles compared to the full width controller. We use counters to count the

number of bytes that are being encrypted by the AES-core.

40

www.manaraa.com

sel_5 sel_5
sel_6 sel_6

sel_7 sel_7

sel_8 sel_8

sel_9 sel_9
sel_10 sel_10

Clk

rst

Controller Datapath

rst

p
d
i

S
d
i

rs
ta

rt

la
s
t_

w
o
rd

_
in

fh
_
w

o
rd

_
in

p
d
i_

v
a
lid

p
d
i_

ty
p
e

p
d
i_

ty
p
e

e
c
o
d
e

e
rr

o
r

g
e
t_

k
e
y

p
d
i_

re
a
d
y

d
o
_
re

a
d
y

d
o
_
v
a
lid

la
s
t_

w
o
rd

_
o
u
t

ta
g
_
v
a
lid

s
d
i_

re
a
d
y

m
o
d
e

s
d
i_

v
a
lid

fh
_
w

o
rd

_
o
u
t

do

en_2 en_2
en_1

en_3 en_3

en_1

sel_dinsel_din

ld_i
start start

ld_i

Sel_2
Sel_1

Sel_3
sel_4

Sel_1
Sel_2
Sel_3
sel_4

SILC SILC

Figure 4.10: Toplevel Structure of Our SILC Lightweight Design

41

www.manaraa.com

Chapter 5: Joltik

This chapter focuses on the implementation of Joltik. We first discuss the tweakable block cipher,

Joltik-BC and later explain Joltik and it’s implementation.

5.1 Introduction

Joltik is a lightweight authenticated encryption algorithm based on the tweakable block cipher Joltik-

BC which is AES like. Joltik has two main variants which differ in the way they allow the usage of

the nonce (N):

• Joltik nonce-respecting (E 6= and D6=): In this variant the user is not allowed reuse the same

nonce for encrypting with the same key.

• Joltik nonce-misuse resistant (E= and D=): In this variant the user can reuse the nonce

with the same key.

5.1.1 Features

Joltik provides good security with only a single call to the block cipher per message [31]. It is simple

to design and analyze both the internal tweakable block cipher and the authentication mode. Joltik

can resist side-channel attacks with the same techniques used for AES.

5.2 Joltik-BC

Joltik-BC is a tweakable 64-bit block cipher with 128-bit key. It takes an additional input named

as tweak (T) along with message (Plaintext(P) or Ciphertext (C)). Symbolically, the encryption is

denoted as EK(T,P)=C and the decryption is denoted as E−1K (T,C)=P. The design of Joltik-BC is

an iterative substitution-permutation network similar to that of AES The state is a 4 × 4 matrix

of nibbles (4-bit word). The number of rounds r is 24 for Joltik-BC-128 (size of key+tweak=128

42

www.manaraa.com

bits) and 32 for Joltik-BC-192 (size of key+tweak=192 bits). Any round in Joltik-BC has four

transformations that are applied to the internal state:

• AddRoundTweakey- A 64-bit round subtweakey (defined in 5.2.3) is XORed to the internal

state.

• SubNibbles - Apply 4-bit S-Box(defined below in 5.2.1) to the internal state.

• ShiftRows - Rotates the 4-nibble i-th row left by i positions.

• MixNibbles - Multiplies the internal state with the constant MDS matrix (defined below in

5.2.2)

After the above transformations a final AddRoundTweakey is applied to get the ciphertext.

5.2.1 S-box

The 4-bit S-box used in Joltik-BC is the one selected for the Piccolo block cipher [46]. It is defined

by the following table 5.1.

Table 5.1: S-Box Used in Joltik-BC

nibble in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nibble out 14 4 11 2 3 8 0 9 1 10 7 15 6 12 5 13

5.2.2 MDS Matrix

The MDS (M and M−1) matrix used in Joltik-BC is involutary. The matrix is shown below:



1 4 9 13

4 1 13 9

9 13 1 4

13 9 4 1



The decryption operation in Joltik-BC is similar to that of encryption but inverse transformations

are applied in a reverse order.

43

www.manaraa.com

2X

STK0 STK1

K
T

.

.

.

. .

.

.

64

64

64

192

RC0 RC1

X2

X 4

X 4

STKr

.

.

.

TK0(r) TK1(r)

RCr
TK2(1)

TK1(1)
TK0(1)T

K
0
(0

)

T
K

1
(0

)

T
K

2
(0

)

TK2(r)

H

Permutation

H

HH

Permutation

H
Permutation Permutation

H
H

H

Permutation

H

Permutation

Permutation

Permutation

Permutation

Figure 5.1: Key Scheduling Algorithm of Joltik-BC 192

5.2.3 Generation of Subtweakeys

The subtweakey at round i (STKi) is defined below:

for Joltik-BC-128:

STKi= TK1
i ⊕ TK2

i ⊕ RCi

for Joltik-BC-192:

STKi= TK1
i ⊕ TK2

i ⊕ TK3
i ⊕ RCi.

Where TK1
i , TK2

i , TK3
i are tweakeys produced by the key scheduling algorithm (KS(W,α)) shown

in figure 5.1 The algorithm takes a 64-bit word W and a constant α as inputs and gives subkeys

as the output sequentially by applying a nibble permutation(h)(defined below), and a finite field

multiplication g. Subkey of ith round is defined as TKi=g(h(TKi−1)). The h permutation used in

the key scheduling algorithm is shown in table 5.2

Table 5.2: H Permutation in Joltik-BC

in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
out 1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

44

www.manaraa.com

Key and tweak are concatenated to form KT (192 bits in the case of Joltik-BC-192). The outputs

of the key scheduling algorithm can be defined as follows:

TK1
i = KS(W1,1), where W1 are the first most significant 64 bits of KT.

TK2
i = KS(W2,2), where W2 are the second most significant 64 bits of KT.

TK3
i = KS(W3,4), where W3 are the third most significant 64 bits of KT.

The round constants used in the key scheduling algorithm are similar to the constants used in LED

cipher [20].

5.3 Encryption and Decryption

The encryption of Joltik starts with processing of associated data to produce “Auth” and then

message processing is done to produce the ciphertext and tag.

Processing of Associated Data

Associated data is encrypted by concatenating tweak (T) as Nonce, ”0010” and block count to form

the tweak (T). Outputs of all the encryptions are XORed together to get the intermediate “Auth”,

which is later used for generation of tag. Figure 5.2 explains the algorithm.

 E E K K

 0

 E K

 A
la

 A
 2 A

 1

 Auth

 2,N,0 2,N,1 2,N,la−1

Figure 5.2: Associated Data Processing Without Padding

In the case where the length of the associated data is not a multiple of the block size, padding

takes place. Joltik uses pad10∗ function that applies 10∗ padding such that total length of the data

45

www.manaraa.com

is equal to multiple of block size (n). While encrypting the padded block the tweak is formed by

concatenating Nonce, “0110”, block count

pad(10∗)(X)=X‖1 ‖0n−|X|−1

The figure 5.3 shows the algorithm for processing associated data with padded last block.

 2

 E E K K

0

 E

10

 K

 E K

 6,N,la

la A A 1 A A

 2,N,0 2,N,1 2,N,la−1

Only if last block
is incomplete

 Auth

Figure 5.3: Associated Data Processing with Padding

5.3.1 Message Processing

A message is encrypted by taking tweak as concatenation of“0000 ‖ Nonce‖ block counter” to gen-

erate the ciphertext. Tag is produced by XORing the “Auth”, which is generated by processing

associated data, with the encrypted output of the checksum. Checksum is computed by first initial-

izing to zero and by XORing the message bits. Figure 5.4 shows the algorithm.

46

www.manaraa.com

 E K

final

 Tag

 1,N,l

Checksum

Auth

E K

 1 2 M

 KE K

 M l M

 C
 2

 C 1 l C

 E 0,N,0 0,N,1 0,N,l−1

Figure 5.4: Message Processing Without Padding in Joltik

Similar to associated data processing in the case where the length of the message is not a multiple

of the block size padding is done. In order to produce the last ciphertext block, the padded message

is XORed with “final”, which is produced by encrypting an empty string of length equal to block

size by taking “0100 ‖ Nonce‖ block counter” as the tweak. Tag is obtained by XORing the “Auth”

with “final” which is produced by encrypting checksum by taking “0101 ‖ Nonce‖ block counter”

as the tweak input. Figure 5.5 shows the algorithm.

M *10*

E K

 1 2 M

 KE K

 E K

final

 Tag

 5,N,l

pad

 E K
 4,N,l

 M l M
Checksum

Auth

 C
 2

 C 1 l C

 E 0,N,0 0,N,1 0,N,l−1

 C
 *

0
n

is incomplete

Only if last block

Figure 5.5: Message Processing With Padding in Joltik

47

www.manaraa.com

5.4 Fullwidth Implementation

Joltik is designed around Joltik-BC core. It is the most basic implementation which is neither

optimized for area nor throughput. As Joltik is inverse free a single Joltik-BC is used for both

encryption and decryption and a decrypt signal selects between the two operations.

5.4.1 Datapath Design

Datapath design is explained below in two parts

Datapath Design at the Input Side of the Cipher

As shown in figure 5.6, the datapath at the input of the block cipher consists of a sequence of

multiplexers and registers. The data block which is to be passed to the block cipher propagates

through the multiplexer mux din and arrives at the input of the cipher. The tweak which is given

as the input to the Joltik-BC is not same at all times, it changes based on the operation being

performed. So we require a series of two 2×1 (M1, M2) and one 4×1 (M3) 4-bit multiplexers

which fetches 4-bit strings and concatenate with nonce and counter value to update the tweak.The

checksum is generated by XORing message with an empty string and stored in the register Reg C

and updated in parallel. The checksum is fetched as input into the Joltik-BC core when the last

block of the AD/message has arrived. The input is processed differently in the case, where the

message length is not a multiple of the block size.

Datapath Design at the Output Side of the Cipher

At the output side the register Reg A is used to store Auth. It is first initialized to a string of

zeros and then updated by XORing the output of encryption of associated data with the string of

zeros. Final, which is obtained by encrypting checksum is used to generate tag by XORing it with

Auth. Pad is produced by encrypting an empty string of zeros of length equal to block size. In the

case where the message length is not a multiple of the block size, the last ciphertext block (C∗) is

generated by XORing pad with input (bdi∗). pad is produced by encrypting a string of zeros of

length equal to block size.

48

www.manaraa.com

Reg_C

Reg_A

counter

start

rst
rst

28

32

key

start

decrypt

Tweak

init
done_init

done

readyready

done_init

done

Joltik−BC

Dout

din

key

final

Pad

Mux_din

M
3

*
0

IV

bdi

||

decrypt

init

4

Checksum

Auth bdi

4

6
2

5 M
2

M
1

0
1

bdoTag

All buses are 8−bit wide unless indicated

Figure 5.6: Datapath Design of Joltik

5.4.2 Design of Control Logic

Figure 5.7 shows the top level state machine of our fullwidth Joltik design. Upon reset the controller

enters into the Reset state where in all the registers are reset. Then the state is changed to wait

state and in which the controller waits until the data is given as input and this is shown when the

ready signal is high. If there is a need of updating the key then the roundkey generation. This is

done by checking for the “key needs update” signal. If this signal is low then the controller goes to

the “IV load” state. The controller stays in subtweakey generation process until the “done rkey”

signal is high. Every time a new data comes in the tweak must be updated so the “bdi ready”

signal is checked before generating the subtweakey. Once the signal is high the next task to load

49

www.manaraa.com

IV and process it. In this state the controller waits until the signal “iv ready” is high. After this,

the controller checks for “bdi ad” signal which indicates that the incoming data is associated data.

If the “bdi ad” signal is high then the next state is “process associated data”. In this state the

controller waits for “bdi eot” signal which indicates that the associated data has come to an end. If

this signal is high then the next process is encryption/decryption. In this state the controller again

waits for the “bdi eot”. The controller takes 32 clock cycles each to process the associated data and

encryption/decryption. After encryption/decryption, the controller waits for “bdi eoi” signal which

denotes the end of information then the tag generation takes place.

 Key_needs_update

IV_load
Generation

 ~Key_needs_update

Data

Decryption

Encryption/

Process Associated
~bdi_eot

~bdi_eot

bdi_eot

bdi_eot && bdi_eoi

Generate Tag

key_ready && ready
iv_ready

~iv_ready

done_rkey

~done_rkey

S_RESET

Wait

Sub Tweakey

~ready

bdi_ready

bdi_ad~bdi_ad

rst

Figure 5.7: Toplevel State Machine of Joltik

The signals exchanged between the datapath and controller are shown in the figure 5.8. The

names of the signals represent the usage of the signal in the datapath. The controller provides the

select signals “Sel 1”, “Sel 2”, “Sel 3” for the multiplexers used in the datapath to update the tweak

according to the operation being performed. Other select signals (“sel din”, “sel dout”) are given

for the multiplexers at the input inside and output side of the cipher. The enable signals “en a”

50

www.manaraa.com

and “en c” are given to the registers that store the checksum and auth values. The controller checks

for the delimiter signals “bdi eoi” and “bdi eot” which denote the end of data and end of type.

Upon checking for the delimiter signals the controller provides the select signals and enable signals

as required to the datapath core.

startstart

en_i
ld_i

en_i
ld_i

rst

k
e
y
_
re

a
d
y

b
d
i_

e
o
i

K
e
y
_
n
e
e
d
s
_
u
p
d
a
te

b
d
i_

s
iz

e

IV
_
re

a
d
y

b
d
i_

p
ro

c

b
d
i_

re
a
d
y

b
d
i_

d
e
c
ry

p
t

Clk

rst

b
d
i_

a
d

Tag bdo

e
x
p
_
ta

g

K
e
y

b
d
i

n
p
u
b

k
e
y
_
u
p
d
a
te

d

n
p
u
b
_
re

a
d

b
d
i_

re
a
d

m
s
g
_
a
u
th

_
d
o
n
e

b
d
o
_
w

ri
te

ta
g
_
w

ri
te

m
s
g
_
a
u
th

_
v
a
lid

Controller Datapath

e
n
_
a

ld
_
i

Joltik

64 128 64
32

4 4

6464

Joltik

Sel_2
Sel_1

Sel_3
sel_dout sel_dout

Sel_3
Sel_2
Sel_1

init_bc

en_cen_c

en_a en_a

sel_dinsel_din

init_bc

Figure 5.8: Toplevel Diagram of Joltik

5.5 Lightweight Implementation

This section covers the lightweight design of Joltik. First, we will discuss the lightweight version

of the tweakable block cipher Joltik-BC. Later, we will discuss the design of Joltik authenticated

encryption cipher which is built on the Joltik-BC.

5.5.1 Lightweight Joltik-BC

The lightweight design can be explained by splitting it into four transformations that are applied to

the internal state:

51

www.manaraa.com

Shiftrows

Shiftrows is done by adjusting the address of the DRAM by using two 4×1, a 2×1 multiplexer and a

register. The output of the register is given as an address to the DRAM that stores the data input.

SubNibbles

The 4-bit S-box is applied to the output of the first DRAM.

MixNibbles

The MixNibbles operation is done by multiplying the rows with 1, 4, 9, 13 and XORing them

together. For this operation we use four 4×1 multiplexers and 4 registers (R1,R2,R3,R4).

Key Scheduling

Key Scheduling is done by using 2 levels of DRAMs. The first level of DRAMs store the original

key where as the second level stores the key after the g multiplication. The address of the second

level DRAMs are H permuted.

52

www.manaraa.com

ROM

RC

9

1

13

5

Reg

datain

stk

X4

din din

DRAM

S−BOX

din

dr

wr wr wr
Perm

Inv H

din

wr wr

X2 X4

dindin

en_i

Key||Tweak

44
4

4

Key scheduling

(count(0))’

(count(0))’

count(0)
count(0)count(0)

count 4

1
0 1 0 1

Mix Nibbles

DRAM4
dr

dr dr

dr
drdr

add_r add_r add_r

add_r add_r add_r

STK1 STK2 STK3

add_l

add_l
DRAM5

add_l
DRAM6

add_ladd_l
add_l

din

DRAM1 DRAM2

DRAM3

+

Subnibbles

Shift rows

mix_n0 mix_n1 mix_n2 mix_n3

n_counter

Mk2

load
load load

0

1
0

1

0

1

0
0

3

2

1

sel_k2
sel_k1

0

1

"0001"

"0010"

"0011"
[5:3]

[2:0]

R2 R3R1R0

m
u

l_
1

m
u

l_
4

m
u

l_
9

m
u

l_
1

3

m
u

l_
4

m
u

l_
1

m
u

l_
1

3

m
u

l_
9

m
u

l_
9

m
u

l_
1

3

m
u

l_
1

m
u

l_
4

m
u

l_
1

3

m
u

l_
9

m
u

l_
4

m
u

l_
1

mix_nibble

stk

r_add

0 4 8 12

MK1
Mk3

en_k1

count[0]’
count[0]’

en_k2

count[0]’

en_k3

(count(0))’

wr

mul_4 mul_9mul_13

mul_1 X9 X13

Figure 5.9: Optimized Datapath Design of Joltik-BC

53

www.manaraa.com

5.5.2 Optimized Datapath for Lightweight Implementation

The datapath is designed to optimize the area. Figure 5.10 shows the design. The changes made to

the fullwidth datapath are mentioned below:

At the Input Side

• The register Regc which stores the checksum is replaced with a DRAM.

• The width of mux din is changed from 64-bit to 4-bit.

• As the datapath size of Joltik-BC is 4-bit and the inputs are 16 bits wide, three 4-bit registers

R1,R2,R3 are used to store the nibbles and a 4-bit 4×1 multiplexer (M4) is used to select

between the nibbles.

• An additional 4-bit 4×1 multiplexer (M5) is used to select between key, IV, state string, and

counter.

At the Output Side

• Three 4-bit registers R4,R5,R6 are used to store the encrypted nibble and concatenate the

ouputs to get a 16-bit output.

• The register Rega is replaced with a 16×4 DRAM (DRAM2).

• As the interface has a single ouput port an additional multiplexer (M6) is added to select

between tag and ciphertext.

5.5.3 Controller Design

The toplevel flow of the controller for lightweight Joltik design is shown in figure 5.11. The flow is

similar to that of the fullwidth design but the signals that controller check are different. Upon reset

the controller enters into the Reset state where in all the registers are reset. The controller stays in

the “wait” state until the key is ready which means it waits until the “sdi valid” and “pdi valid”

signal is high because we need to have IV before generating subtweakeys. In the “wait” state if the

“get key” is high then the subtweakey generation takes place if not the IV is processed directly. As

in the lightweight interface, the public data comes on a single bus, the signal “pdi type” is used

54

www.manaraa.com

R1 R2 R3
R

4
R

5
R

6

PISO

countercounter

start

rst

decrypt

ready

done_init

done

Joltik−BC

din

final

Mux_din

*
0

bdo

ready

done_init

done

R
7

Tag

0

3

4

7

8

11

12

15

kt

0

3

4
7

8
11

12 15

16

IV

M4

M5

M
6

M3

Str

initinit

decrypt

start

rst

pdi

R
8

R
9

16

0

3

4

7

8

11

12
15

M
7

28

sdi

M2 M1

2545

1 0

l_add
r_adddr

Dram_C
din

l_add
r_add

din

dr
Dram_A

add

add

key

dout

All buses are 4−bit wide unless indicated

16

do

Figure 5.10: Lightweight Datapath Design of Joltik

55

www.manaraa.com

to distinguish between the type of data coming in. The end of type signal “eot” is checked while

processing each type of data. Once the encryption/decryption is completed the controller checks for

the “last word in” signal and if this signal is high the next process is to generate the tag.

IV_load
Generation

Data

Decryption

Encryption/

Process Associated

Generate Tag

S_RESET

Wait

eot

pdi_valid && pdi_type="0010"

pdi_valid && pdi_type="0011"

~eot

~eot

get_key

~sdi_ready

sdi_ready

~get_key
pdi_valid && pdi_type="0001"

~eot

eot

eot && last_word

rstart

Sub Tweakey

~sdi_valid

~pdi_valid &&

Figure 5.11: Toplevel State Machine of Our Lightweight Joltik Design

The top level architecture of the controller is shown in figure 5.12. When compared to the

fullwidth design, the lightweight design has larger number of registers and multiplexers. The signals

that are exchanged between the controller and the datapath are shown. All the enable signals and

select signals are given to the datapath based on the operation required to be performed.

56

www.manaraa.com

sel_5 sel_5
sel_6 sel_6

en_8en_8
en_7en_7
en_6en_6

Clk

rst

Controller Datapath

Joltik Joltik

Sel_2
Sel_1

Sel_3

sel_dinsel_din

ld_i

sel_4

Sel_1
Sel_2
Sel_3
sel_4

rst

p
d
i

S
d
i

rs
ta

rt

la
s
t_

w
o
rd

_
in

fh
_
w

o
rd

_
in

p
d
i_

v
a
lid

p
d
i_

ty
p
e

p
d
i_

ty
p
e

e
c
o
d
e

e
rr

o
r

g
e
t_

k
e
y

p
d
i_

re
a
d
y

d
o
_
re

a
d
y

d
o
_
v
a
lid

la
s
t_

w
o
rd

_
o
u
t

ta
g
_
v
a
lid

s
d
i_

re
a
d
y

m
o
d
e

s
d
i_

v
a
lid

fh
_
w

o
rd

_
o
u
t

do

start start

ld_i

en_5 en_5
en_4

en_2 en_2
en_1

en_3 en_3

en_1

en_4

en_9en_9

Figure 5.12: Toplevel Structure of Joltik

57

www.manaraa.com

Chapter 6: ACORN: A Lightweight Authenticated Cipher

The last candidate we implemented is ACORN. In this chapter we first explain the functions that

build the structure for ACORN. Later, we discuss the hardware implementation of ACORN.

6.1 Introduction

6.1.1 Features

ACORN is a bit-wise authenticated cipher [50] which means, one bit of message is processed in one

step there by benefiting the lightweight hardware. It allows parallel computation, so high speed

hardware and software implementation is possible. The hardware cost of ACORN is low and is very

efficient. The length of message and data is not needed in ACORN which means it has a fixed

padding and doesn’t need padding to a multiple of block size. This reduces the cost of hardware.

6.1.2 Functions Used in ACORN

Boolean functions

There are two boolean functions maj(x, y, z) and ch(x, y, z) explained in figure 6.1

X

Y

X

Z

Y

X

Z

Z

Y
maj(x,y,z)

ch(x,y,z)

X

Figure 6.1: Boolean Functions of ACORN

58

www.manaraa.com

Keystream Generation Function (KSG)

This function is used to generate a keystream bit at every step of ACORN. It takes the 293-bit state

(S) as input and gives a single keystream bit as output. Figure 6.2 shows the operation of KSG

function.

S(193)

S(235)

S(61) maj (x,y,z)

ksiS(154)

S(12)

x
y

z

Figure 6.2: KSG function

Feedback Bit Generation (FBK) Function

The FBK function takes the present state (Si) and control bits (Ca,Cb) as inputs and returns

feedback bit fi as the output at each step of the operation. Figure 6.3 shows the operation of FBK.

S(107)

S
(6

6
)

S
(2

3
0

)

S
(1

1
1

)

cbiksi

S(0)

S(244)

S(23)

S(160)

fi

cai S(196)

 x

z

 y maj(x,y,z)

 ch(x,y,z)
x y z

Figure 6.3: FBK Function

59

www.manaraa.com

State Update128 Function

The state update function takes present state (Si), data bit (mi) and control bits (Ca, Cb) as

inputs and generates the next state (Si+1) as the output. Figure 6.4 shows the block diagram of

stateupdate128 function.

 mi

cai

cbi Function

S_nxt

SStateUpdate128

Figure 6.4: Block Diagram of State Update Function

The feedback bit (fi) is generated by using the FBK function. This feedback bit is then XORed

with databit (mi) to generate the 293th bit of the next state. Figure 6.5 shows the operation of state

update function.

R
e
g

cai

cai cbi
S

mi

S

292 289 235 230 196 193 160 154
293

111 107 66 61 23 0

cbi
2921

293

293

S_nxt

FBK

Figure 6.5: State Update Function

60

www.manaraa.com

6.2 Encryption and Decryption

6.2.1 The Initialization

The initilization step includes loading of Initialization Vector (IV) and key (K) into the state and

updating the state 1792 times. The initial state is set to an empty string of 293 bits. The inputs to

the state update function during initialization are tabulated in table 6.1.

Table 6.1: Message and Control Bits in Initialization Process

i -1792 to -1665 -1664 to -1537 -1536 -1535 to 0

m Ki IVi K0 ⊕ 1 Kimod 128

Ca 1 1 1 1

Cb 1 1 1 1

6.2.2 Processing the Associated Data

This step follows after the initialization step and uses the associated data to update the state. Even

when there is no associated data the state is updated 256 times. The inputs to the stateupdate

function for processing associated data are show in table 6.2.

Table 6.2: Message and Control Bits for Processing Associated Data

i 0 to adlen-1 adlen adlen+1 to adlen+127 adlen+128 to 255

m ADi 1 0 0

Ca 1 1 1 0

Cb 1 1 1 1

6.2.3 The Encryption

At each step of the encryption a plaintext bit is used for updating the state and producing the

ciphertext bit. The inputs to the state update function in this step are shown in 6.3.

61

www.manaraa.com

Table 6.3: Message and Control Bits for Encryption

i adlen+256
to
adlen+256+msglen-1

adlen+256+msglen adlen+256+msglen+1
to
adlen+383+msglen

adlen+384+msglen
to
adlen+511+msglen

m messagei 1 0 0

Ca 1 1 1 0

Cb 1 1 1 1

After updating the state, a keystream is generated over the state using KSG128 function and

ciphetext bit (ci) is produced by XORing plaintext bit(pi) with a keystream bit

ci=pi ⊕ KSG128(Si)

6.2.4 The Finalization

This step is used for generating the authentication tag bit T. In this step the the state is updated

512 times. The inputs to the state update function at this stage are tabulated in 6.4

Table 6.4: Message and Control Bits for the Finalization

i adlen+msglen+212 to adlen+pclen+1279

m 0

Ca 1

Cb 1

After the state update, keystream bits are produced by running the KSG128 function over the

state. The tag is generated by concatenating the last t bits of the keystream, where t is the length

of the tag.

ksi=KSG128(Si)

Tag(T)= ksadlen+msglen+1535−t+1‖ ksadlen+msglen+1535−t+2 ‖ . . .‖ ksadlen+msglen+1535−t+t

62

www.manaraa.com

6.2.5 Decryption and Verification

Decryption and verification are similar to that of encryption and tag generation. If the verification

of the tag fails, the ciphertext and the new tag are not given as output.

6.3 Fullwidth Implementation

The implementation of ACORN is simple when compared to the other two candidates as it is based

on a strem cipher. The design is wrapped around the stateupdate128 (6.1.2) function.

6.3.1 Datapath Design

The design is 8-bit wide, but the inputs from the interface are 128 bit wide so we use three parallel

in serial out shift registers to load the 128 bit inputs in parallel and shift 8 bits at a time serially.

The design also has two cascaded 8-bit multiplexers, a 2×1 multiplexer to select between key and iv

and a 4 ×1 multiplexer which selects between block data input (Message/Associated Data), key/IV,

“0” and “1”. The output of the multiplexer is then split into eight single bits and then given as the

input message bit to eight stateupdate128 functions (explained earlier in 6.1.2). Using 8 state update

functions will pipeline the design. The stateupdate function also takes control bits Ca and Cb as

inputs. The value of these control bits can be either 0 or 1 depending on the operation. Additionally

a 293-bit register (Reg state) is used to store the next state. The output of state update functions

is given as input to the next which is then given as the input to produce the further next state. The

present state of every state update function is also given as input to 8 KSG128 functions (explained

earlier in 6.1.2) to generate the key stream bit, which then combined together to get a keystream

byte. The key stream byte is sent serially into a Serial-In-Parallel-Out(SIPO) shift register and given

as 128-bit tag output. The output of SIPO is then XORed with the plaintext to give the 128-bit

ciphertext. Figure 6.6 shows the datapath design of ACORN.

63

www.manaraa.com

 ks

m

S_nxt

SUS_pr

m

S_nxt

SUS_pr

m

S_nxt

SUS_pr

m

S_nxt

SUS_pr

m

S_nxt

SUS_pr

m

S_nxt

SUS_pr

m

S_nxt

SUS_pr

m

S_nxt

SUS_pr

Reg _State

293

S_nxt

Sipo_bdo

bdi

Piso_key Piso_IV

Mux_din

Piso_bdi

0* 0*1

128

128

S
ip

o
_

T
a

g

S_nxt

K
S

G
1

2
8

K
S

G
1

2
8

K
S

G
1

2
8

K
S

G
1

2
8

K
S

G
1

2
8

K
S

G
1

2
8

K
S

G
1

2
8

K
S

G
1

2
8

128

128

293 293 293 293 293 293 293 293

0 7

1 1 1 1 1 1 1

1 1 11 1 1 1

70

1

128
bdo

Tag

128128

bdi Key IV

M1

All buses are 8−bit wide unless indicated

Figure 6.6: Datapath Design of ACORN

6.3.2 Design of Control Logic

The controller of ACORN has separate states for loading and processing the data. Figure 6.7

shows the top level state machine of fullwidth Acorn design Upon reset the controller stays in the

reset state. Then the state is changed to wait state and in this state the controller waits until

the data is given as input and this is indicated by turning the ready signal to high. Next comes

the initialization process which involves loading of key and IV into the data bit. This operation

is performed by maintaining a count (“init count”) which counts upto 224 which is the number of

64

www.manaraa.com

bytes needed complete the initialization process are 224. Therefore the initialization process takes

224 clock cycles in total. Once the counter reaches more than 224 then the controller checks for

“bdi ready”and “bdi ad” signals. If “bdi ad” is high then the next state is processing associated data

if not plaintext/ciphertext is processed. In these two states new counters which counts the number

of bytes of associated data (“ad count”) and plaintext/ciphertext (“bdi count”) are initialized. For

our design we have taken the length of associated data and plaintext as 128. The controller waits in

these state untill the internal state is updated after loading the associated data and plaintext. Both

the processes needs 48 bytes to be loaded into the data bit of state update function. Therefore these

two states takes 48 clock cycles each. Once the corresponding counter reaches its limit then the

controller comes out of that particular state. After Encryption/Decryption is done then the next

process is finalization, in which tag generation and validation is done. In order to generate the tag

the data bit has to be loaded with 768 0s. So, the controller waits for 96 clock cycles in the tag

generation process. This process is handled by using a separate counter “tag count”. The controller

waits inside the finalization state until this counter reaches upto 96. After finalization process the

controller goes back to the wait state.

65

www.manaraa.com

Initilization

Data

bdi_ready && ~bdi_ad bdi_ready && bdi_ad

Decryption

Encryption/

Finalization

init_count>224

init_count<=224

Process Associated

S_RESET

tag_count>96

 Key_needs_update

S_wait

tag_count<=96

ad_Count<=48

ad_Count>48
bdi_count<=48

bdi_count>48

ready

rst

Figure 6.7: Toplevel State Machine of ACORN

Figure 6.8 shows the Toplevel design of ACORN. There are very few signals exchanged between

the controller and datapath as compared to the other candidates. The shift signals “sh key”, “sh iv”

and “sh bdi” are used as the load signals for their respective PISOs. The select signals “sel a” and

“sel b” are used to select the control bits ca and cb. The enable signal “en S” is given as input to

the register that stores the state. The signals must be enabled as per the operation that needs to

be performed. This process is maintained by counters that counts until the process is done. For

example, during initialization process the key and nonce must be loaded into the data bit (mi),

and the multiplexer has to select the data input accordingly, for this to happen the select signals

and enable signals are maintained until the length of the key (128) and nonce (128) is counted by

66

www.manaraa.com

using two separate counters for key and nonce. After loading the key and nonce, the process requires

loading of a “1” and 15 “0”s into the message bit, this is done by counting the counter until 1535 and

setting the select signals and enable signals as needed. Similarly associated data and plaintext are

processed by using counters that count upto the length of associated data and plaintext respectively.

Inside the controller different states are maintained to process the specific segment of the data.

Sel_a

rst

k
e

y
_

re
a

d
y

b
d

i_
e

o
i

K
e

y
_

n
e

e
d

s
_

u
p

d
a

te

b
d

i_
s
iz

e

IV
_

re
a

d
y

b
d

i_
p

ro
c

b
d

i_
re

a
d

y

b
d

i_
d

e
c
ry

p
t

Clk

rst

b
d

i_
a

d

Tag bdo

e
x
p

_
ta

g

K
e

y

b
d

i

n
p

u
b

k
e

y
_

u
p

d
a

te
d

n
p

u
b

_
re

a
d

b
d

i_
re

a
d

b
d

o
_

w
ri
te

ta
g

_
w

ri
te

m
s
g

_
a

u
th

_
v
a

lid

ACORN

Controller

en_Sen_S
sh_key sh_key
sh_iv sh_iv

sh_bdi sh_bdi

Sel_b Sel_b
Sel_a

ACORN

Datapath

m
s
g

_
a

u
th

_
d

o
n

e

Sel_dinSel_din

Figure 6.8: Toplevel Design of ACORN

6.4 Lightweight Implementation

6.4.1 Datapath Design

The design is shown in the Figure 6.9.

67

www.manaraa.com

Tag

ks

bdi

Pdi

16

State Update

Sipo_out
S_next

16

16

293

m

sel_a

sel_b S

ks

Mux_din

Reg _State

Piso_bdi

16

0 1

M1

S_next

ca

cb

S_next

 KSG128

S

M2

16

Sdi

Piso_IVPiso_key

16 do

All buses are 1−bit wide unless indicated

293

293

Figure 6.9: Light-Weight Datapath Design of ACORN

The changes made for optimizing the datapath for our lightweight design are listed below:

• The width of the datapath is now changed to a single bit so the PISOs are now designed such

that they output single bit at at a time.

• A single stateupdate function and KSG128 function are used instead of eight.

• The size of the muxes is changed to a single bit.

68

www.manaraa.com

6.4.2 Control Logic Design

Figure 6.10 shows the top level state machine of our lightweight ACORN design. The flow of the

controller is similar to that of the fullwidth design.

Data

bdi_ready && ~bdi_ad bdi_ready && bdi_ad

Decryption

Encryption/

Finalization

Process Associated

S_RESET

 Key_needs_update

S_wait

rst

init_count<=1792

init_count>1792

tag_count>768

tag_count<=768

ad_Count<=384

ad_Count>384

bdi_count>384

bdi_count<=384

Initialization

ready

Figure 6.10: Toplevel State Machine of our ACORN Lightweight Design

The controller of the optimized design is designed in the same way as of the fullwidth except

that the counters are longer. Hence it takes more clock cycles as compared to the fullwidth design.

as we load one bit at a time. The counters are 8 times bigger when compared to those of the

fullwidth design. Figure 6.11 shows the top level architecture of the lightweight design of ACORN.

The toplevel structure of lightweight design remains same as that of the fullwidth design.

69

www.manaraa.com

Sel_b

Sel_1

Sel_2Sel_2

Clk

rst

Controller Datapath

rst

p
d

i

S
d

i

rs
ta

rt

la
s
t_

w
o

rd
_

in

fh
_

w
o

rd
_

in

p
d

i_
v
a

lid

p
d

i_
ty

p
e

p
d

i_
ty

p
e

e
c
o

d
e

e
rr

o
r

g
e

t_
k
e

y

p
d

i_
re

a
d

y

d
o

_
re

a
d

y
d

o
_

v
a

lid

la
s
t_

w
o

rd
_

o
u

t

ta
g

_
v
a

lid

s
d

i_
re

a
d

y

m
o

d
e

s
d

i_
v
a

lid

fh
_

w
o

rd
_

o
u

t

do

ACORNACORN en_S

sh_key
sh_iv

sh_bdi

Sel_b
Sel_a

en_S
sh_key

sh_iv

sh_bdi

Sel_a

Sel_1

Sel_dinSel_din

Figure 6.11: Toplevel Structure of ACORN our Lightweight Design

70

www.manaraa.com

Chapter 7: Performance Evaluation

The results for hardware implementation of selected authentication techniques are tabulated in this

chapter.Area utilization and timing results are provided for FPGA implementations.

7.1 Our Implementation Results

7.1.1 Throughput Computations

The parameters that will be used for throughput computations are tabulated in table7.1

Table 7.1: Notations

Symbol Comment
lm1 Loading first block message
lm Loading subsequent blocks of message

lad1 Loading fist block of associated data
lad Loading subsequent blocks of associated data

lk Loading key
ln Loading nonce or initialization vector
ik Initialization of key
i Initialization (does not involve key or iv)

in Initialization of nonce or iv
pm Processing message
pad Processing associated data

z Finalization
oc Output block of ciphertext
ot Output tag

The resultant formula for the number of clock cycles for encrypting N message blocks and au-

thenticating A associated data blocks.

clk cycles (N,A)= i+ ik + in + lm1 + lad1 + lm·(N-1) + lad ·(A-1)+pm·(N) + pad ·(A) + z +

oc·(N) + ot

71

www.manaraa.com

The formula can be simplified as below

clk cycles (N, A) = i+ik+in+lm1+lad1−lm−lad+ot+z+(lm+oc+pm)·(N)+(lad+pad)·(A) (7.1)

Throughput is defined as the number of bits processed per unit of time. We can derive the formula

for throughput of encryption/decryption for long messages from (7.1). For very long messages, we

can neglect the initialization part so the resultant formula is :

ThroughputENC/DEC =
b

(clk cycles(N + 1, 0)− clk cycles(N, 0)) · T
Bits/sec. (7.2)

where, b is the block size of the algorithm and T is the clock period In the similar way, the throughput

of authentication can formulated as below:

ThroughputAUTH =
b

(clk cycles(0, A+ 1)− clk cycles(0, A)) · T
Bits/sec (7.3)

Throughput formulae of our implementations of CAESAR candidates is shown in 7.2

Table 7.2: Throughput formulae for our implementations of CAESAR candidates

Algorithm
Design
Type

Block
Size
(bits)

b

ThroughputAUTH

b

(lad+ pad) · T

ThroughputENC/DEC

b

(lm+ pm+ oc) · T
ACORN Fullwidth 1 1/ (0+48)· T 1/(0+80+16)· T
ACORN Lightweight 1 1/ (0+384)· T 1/(0+640+128)· T

SILC Fullwidth 128 128/ (1+10)· T 128/(1+10+1)· T
SILC Lightweight 8 8/ (1+10)· T 8/(1+10+1)· T
Joltik Fullwidth 64 64/ (1+32)· T 64/ (1+32+1)· T
Joltik Lightweight 4 4/ (1+32)· T 4/ (1+32+1)· T

7.1.2 Resource Utilization

Devices from the Xilinx Spartan-6 and Artix-7 families of FPGAs were targeted for all implementa-

tions. The complete resource utilization results of our implementations of all the three candidates

are tabulated in 7.3

72

www.manaraa.com

Table 7.3: Resource Utilization

Candidate Type Block Size Slices LUTs FlipFlops BlockRAMs Delay
(Bits) (Area) (ns)

S
p
ar

ta
n
-6

A
rt

ix
-7

S
p
ar

ta
n
-6

A
rt

ix
-7

S
p
ar

ta
n
-6

A
rt

ix
-7

S
p
a
rt

an
-6

A
rt

ix
-7

S
p
a
rt

an
-6

A
rt

ix
-7

ACORN
Fullwidth 1 150 171 402 390 386 336 0 0 2.719 3.677
Lightweight 1 110 148 286 280 289 289 0 0 4.402 4.098

SILC
Fullwidth 128 529 655 1761 1338 1774 1729 0 0 5.739 4.737
Lightweight 8 250 274 357 355 166 142 0 0 7.177 5.246

Joltik
Fullwidth 64 861 787 2641 2801 3275 3177 0 0 7.360 5.115
Lightweight 4 305 354 705 715 802 852 0 0 9.32 7.563

7.1.3 Throughput/Area

Table 7.4 shows the throughput / area calculations of all the implementations.

Table 7.4: Throughput Results of Our Implementations

Spartan-6 Artix-7
Design Type Fullwidth Lightweight Fullwidth Lightweight

Algorithm T
h
ro

u
gh

p
u
t A

U
T
H

(M
b
p
s)

T
P

/
A

re
a

(M
b
p
s/

sl
ic

e)

T
h
ro

u
g
h
p
u
t E

N
C
/
D
E
C

(M
b
p
s)

T
P

/
A

re
a

(M
b
p
s/

sl
ic

e)

T
h
ro

u
g
h
p
u
t A

U
T
H

(M
b
p
s)

T
P

/A
re

a
(M

b
p
s/

sl
ic

e)

T
h
ro

u
g
h
p
u
t E

N
C
/
D
E
C

(M
b
p
s)

T
P

/
A

re
a

(M
b
p
s/

sl
ic

e)

T
h
ro

u
g
h
p
u
t A

U
T
H

(M
b
p
s)

T
P

/
A

re
a

(M
b
p
s/

sl
ic

e)

T
h
ro

u
g
h
p
u
t E

N
C
/
D
E
C

(M
b
p
s)

T
P

/
A

re
a

(M
b
p
s/

sl
ic

e)

T
h
ro

u
g
h
p
u
t A

U
T
H

(M
b
p
s)

T
P

/
A

re
a

(M
b
p
s/

sl
ic

e)

T
h
ro

u
g
h
p
u
t E

N
C
/
D
E
C

(M
b
p
s)

T
P

/
A

re
a

(M
b
p
s/

sl
ic

e)

ACORN 7.66 0.05 3.83 0.025 0.5 0.004 0.25 0.002 5.66 0.03 2.55 0.015 0.6 0.004 0.3 0.007

SILC 2,027.5 3.83 1858.6 3.5130 101.3 0.405 92.8 0.371 2456.4 3.75 2251.7 3.43 138.63 0.505 127.36 0.464

Joltik 263 0.3 255.7 0.29 13 0.04 12.6 0.04 350 0.35 340 0.33 16 0.05 15.5 0.04

7.2 Analysis of the Results

This section covers the analysis of the results obtained.

7.2.1 Area

Of the 3 candidates ACORN uses fewer number of slices as the design is very small when compared

to the other candidates. The lightweight version of all the candidates uses fewer number of slices

when compared to their respective high speed versions. Figure 7.1 shows the bargraph that compares

the number of slices utilized on Spartan6 7.1a and Artix7 7.2b.

73

www.manaraa.com

150

529

861

110

250
305

0

100

200

300

400

500

600

700

800

900

1000

ACORN SILC Joltik

Fullwidth

Lightweight

(a) Spartan6

171

655

787

148

274

354

0

100

200

300

400

500

600

700

800

900

ACORN SILC Joltik

Fullwidth

Lightweight

(b) Artix7

Figure 7.1: Comparison of Slices

7.2.2 Throughput/Area

Of the 3 candidates SILC has the best throughput/area ratio as it uses fewer number of clockcycles

and considerable number of slices. Figure 7.1 shows the bargraph that compares throughput/area

ratios of Spartan6 7.2a and Artix7 7.2.

74

www.manaraa.com

0.025

3.513

0.29

0.002

0.371

0.04
0

0.5

1

1.5

2

2.5

3

3.5

4

ACORN SILC Joltik

Fullwidth

Lightweight

(a) Spartan6

0.015

3.43

0.33

0.007

0.464

0.04
0

0.5

1

1.5

2

2.5

3

3.5

4

ACORN SILC Joltik

Fullwidth

Lightweight

(b) Artix7

Figure 7.2: Comparison of Throuhput/Area

7.3 Comparison with Other Published Results

Our implementation results are compared with other candidate implementations.

75

www.manaraa.com

7.3.1 Fullwidth Designs

The area utilized by our fullwidth implementations is compared with other CAESAR candidate

implementation results published in ATHENa results database [1]. These comparisons are for Virtex6

family. The comparisons are listed in table 7.5

Table 7.5: Fullwidth Design Implementation Results Comparison

Candidate Area Throughput TP/Area
[Slices] [Mbps] [Mbps/slice]

Related work
Joltik 582 343 0.590
Ascon 595 3,235 5.437
AES-GCM 999 3,231 3.234
Deoxys 1,165 1,166 1.001
CLOC 1,290 2,709 2.10
OCB 1,418 2,566 1.81
ICEPOLE 2,336 37,480 17.819
Our work
Joltik 884 453 0.512
ACORN 294 301 0.103
SILC 512 2,779 5.427

Out of all the candidates implemented ICEPOLE has highest throughput and TP/Area as it is

permutation based and uses fewer number of clock cycles. Our Joltik implementation used larger

number of slices than that of their implementation but the throughput/area ratio is close. ACORN

has the lowest throughput of all the candidates that we compared as it is bit wise. ACORN is the

only stream cipher based design of all the candidates listed above. Our SILC has considerably good

throughput and throughput/area ratio when compared to other implementations.

7.3.2 Lightweight Designs

Our lightweight designs are compared with lightweight design implementation by Pansayya Yalla

[52]. These comparisons are for Artix-7 FPGA family.

76

www.manaraa.com

Table 7.6: Lightweight Design Implementation Results Comparison

Design Area Throughput TP/Area
[Slices] [Mbps] [Mbps/slice]

Related work
AES-GCM 548 630 0.115
Keyak 260 136 1.231
Our work
Joltik 354 15.5 0.044
ACORN 110 2.55 0.023
SILC 274 13.86 0.05

AES-GCM and Keyak has reasonably better TP/Area when compared our implementations we

think the reason for this is that our candidate implementation takes more clock cycles when compare

to other lightweight implementations.

77

www.manaraa.com

Chapter 8: Conclusion

In this final chapter, we summarize the work accomplished and our results obtained and we also

state our conclusion about the implemented CAESAR candidates.

8.1 Work Accomplished

Our work first started with characterizing the CAESAR Round 1 submissions under different fea-

tures. Then we chose 3 candidates that fall into three different categories. We first started with

the fullwidth designs of these 3 algorithms and later optimized them. All the 3 algorithms were

successfully implemented and verified using post place and route simulation.

8.2 Ranking of Our Implementations

The amount of area used by the 3 candidates can ranked as below:

1. ACORN.

2. SILC.

3. Joltik.

Of all the 3 candidates ACORN uses least area as the size of the datapath is very low when compared

to the SILC and Joltik. Between Joltik and SILC, SILC uses less number of resources as the size of

the key is less and the design is very simple as it is built on just AES-Enc. Where as Joltik uses a

tweakable block cipher as the base and it uses 192 bit tweakey. Processing of key in Joltik-BC takes

more area when compared to AES. With respect to throughput/area our implementations can be

ranked as below

1. SILC

2. Joltik

78

www.manaraa.com

3. ACORN

Although ACORN uses least area of all the 3 implementations it has very less throughput as it a

stream cipher based algorithm and so all the operations are bitwise. SILC has the highest through-

put/area ratio of all the 3 candidates.

79

www.manaraa.com

Bibliography

80

www.manaraa.com

Bibliography

[1] ATHENa results database. http://cryptography.gmu.edu/athenadb/. Automated Tool for
Hardware EvaluatioN project.

[2] CAESAR: Competition for authenticated encryption: Security, applicability, and robustness.
http://competitions.cr.yp.to/caesar-call.html, March 2014. Call for submissions.

[3] Farzaneh Abed, Scott Fluhrer, John Foley, Christian Forler, Eik List, Stefan Lucks, David
McGrew, and Jakob Wenzel. The POET family of on-line authenticated encryption schemes.
Submission to CAESAR(Round1), March 2014.

[4] Farzaneh Abed, Christian Forler, and Stefan Lucks. General overview of the first-round caesar
candidates for authenticated ecryption. Technical report, Cryptology ePrint report 2014/792,
2014.

[5] Basel Alomair. AVALANCHEv1. Submission to CAESAR(Round1), March 2014.

[6] Elena Andreeva, Begul Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink,
Nicky Mouha, Wang Qingju, and Kan Yasuda.

[7] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and Kan
Yasuda. AES-COPA v.1. Submission to CAESAR(Round1), March 2014.

[8] Lear Bahack. Julius: Secure mode of operation for authenticated encryption based on ECB
and finite field multiplications. Submission to CAESAR(Round1), March 2014.

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. CAE-
SAR submission:KETJE v1. Submission to CAESAR(Round1), March 2014.

[10] Bertoni, Guido and Daemen, Joan and Peeters, Michaël and Van Assche, Gilles and Van
Keer,Ronny. CAESAR submission:KEYAK v1. Submission to CAESAR(Round1), March 2014.

[11] Alex Biryukov and Dmitry Khovratovich. PAEQ v1. Submission to CAESAR(Round1), March
2014.

[12] Antoon Bosselaers and Fre Vercauteren. YAES v2. Submission to CAESAR(Round1), March
2014.

[13] Mickaël Cazorla, Kevin Marquet, and Marine Minier. Survey and benchmark of lightweight
block ciphers for wireless sensor networks. IDEA, 64(128):34, 2013.

[14] Avik Chakraborti and Mridul Nandi. TriviA-ck-v1. Submission to CAESAR(Round1), March
2014.

[15] Simon Cogliani, D Stefania Maimut, David Naccache, Rodrigo Portella do Canto, Reza Rey-
hanitabar, Serge Vaudenay, and Damian Vizar. Offset merkle-damgard OMD version 1.0. Sub-
mission to CAESAR(Round1), March 2014.

81

http://cryptography.gmu.edu/athenadb/
http://competitions.cr.yp.to/caesar-call.html

www.manaraa.com

[16] Nilanjan Datta and Mridul Nandi. ELmDv1.0. Submission to CAESAR(Round1), March 2014.

[17] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. ASCON v1.
Submission to CAESAR(Round1), March 2014.

[18] Danilo Gligoroski, Hristina Mihajloska3, Simona Samardjiska, Hakon Jacobsen, Mohamed El-
Hadedy, and Rune Erlend Jensen. Pi-cipher v2. Submission to CAESAR(Round1), March
2014.

[19] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici, François Durvaux,
Lubos Gaspar, and Stèphanie Kerckhof. SCREAM and iSCREAM. Submission to CAE-
SAR(Round1), March 2014.

[20] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED block cipher. In
Cryptographic Hardware and Embedded Systems–CHES 2011, pages 326–341. Springer, 2011.

[21] Sandy Harris. The Enchilada authenticated ciphers, v1. Submission to CAESAR(Round1),
March 2014.

[22] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. AEZ v1: Authenticated Encryption by
Enciphering. Submission to CAESAR(Round1), March 2014.

[23] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, Malik Umar
Sharif, and Kris Gaj. Gmu hardware api for authenticated ciphers. Cryptology ePrint Archive,
Report 2015/669, 2015. http://eprint.iacr.org/.

[24] Bart Preneel Hongjun Wu. AEGIS:A Fast Authenticated Encryption. Submission to CAE-
SAR(Round1), March 2014.

[25] Tao Huang Hongjun Wu. JAMBU:Lightweight Authenticated Encryption Mode and AES-
JAMBU. Submission to CAESAR(Round1), March 2014.

[26] HOSSEINI, Hossein and KHAZAEI, Shahram. CBA mode (v1-1). Submission to CAE-
SAR(Round1), March 2014.

[27] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Compact low-
overhead CFB. Submission to CAESAR(Round1), March 2014.

[28] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi. SILC:
SImple Lightweight CFB. Submission to CAESAR(Round1), March 2014.

[29] Nasour Bagheri Javad Alizadeh, Mohammad Reza Aref. Artemia v1. Submission to CAE-
SAR(Round1), March 2014.

[30] Jeremy Jean, Ivica Nikolic, and Thomas Peyrin. Deoxys v1. Submission to CAESAR(Round1),
March 2014.

[31] Jeremy Jean, Ivica Nikolic, and Thomas Peyrin. Joltik v1. Submission to CAESAR(Round1),
March 2014.

[32] Jeremy Jean, Ivica Nikolic, and Thomas Peyrin. KIASU v1. Submission to CAESAR(Round1),
March 2014.

[33] Jean-Philippe, Aumasson Philipp, and Jovanovic Samuel Neves. NORX. Submission to CAE-
SAR(Round1), March 2014.

[34] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander Christian Rechberger, Peter Schwabe,
and Tolga Yalçn. PROSTv1. Submission to CAESAR(Round1), March 2014.

82

http://eprint.iacr.org/

www.manaraa.com

[35] Krovetz, Ted. HS1-SIV(v1). Submission to CAESAR(Round1), March 2014.

[36] Krovetz, Ted and Rogaway, Phillip. OCB (v1). Submission to CAESAR(Round1), March 2014.

[37] Peter Maxwell. Wheesht: an AEAD stream cipher. Submission to CAESAR(Round1), March
2014.

[38] Daniel Penazzi Miguel Montes. AES-CPFB v1. Submission to CAESAR(Round1), March 2015.

[39] Kazuhiko Minematsu. AES-OTR v1. Submission to CAESAR(Round1), March 2014.

[40] Pawe lMorawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Matusiewicz, Josef Pieprzyk,
Marcin Rogawski, Marian Srebrny, and Marcin Wójcik. Icepole v2. http://competitions.

cr.yp.to/round1/icepolev2.pdf, Aug 2015. submitted to the CAESAR competition.

[41] Ivica Nikolic. Tiaoxin- 346. Submission to CAESAR(Round1), March 2014.

[42] Daniel Penazzi and Miguel Montes. Silver v.1. Submission to CAESAR(Round1), March 2014.

[43] Francisco Recacha. ++AE v1.0. Submission to CAESAR(Round1), March 2014.

[44] Markku-Juhani O. Saarinen. The STRIBOBr1 Authenticated Encryption Algorithm. Submis-
sion to CAESAR(Round1), March 2014.

[45] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko Murakami,
Mitsuru Matsui, and Shoichi Hirose. Minalpher v1. Submission to CAESAR(Round1), March
2014.

[46] Shibutani, Kyoji and Isobe, Takanori and Hiwatari, Harunaga and Mitsuda, Atsushi and Ak-
ishita, Toru and Shirai, Taizo. Piccolo: an ultra-lightweight blockcipher. In Cryptographic
Hardware and Embedded Systems–CHES 2011, pages 342–357. Springer, 201.

[47] Jonathan Trostle. AES-CMCC v1.1. Submission to CAESAR(Round1), March 2014.

[48] Rade Vuckovac. Raviyoyla v1. Submission to CAESAR(Round1), March 2014.

[49] Lei Wang. SHELL v1. Submission to CAESAR(Round1), March 2014.

[50] Hongjun Wu. ACORN: A Lightweight Authenticated Cipher. Submission to CAE-
SAR(Round1), March 2014.

[51] Hongjun Wu and Tao Huang. The authenticated cipher MORUS (v1). Submission to CAE-
SAR(Round1), March 2014.

[52] Panasayya Yalla, Ekawat Homsirikamol, and Jens-Peter Kaps. Comparison of multi-purpose
cores of Keccak and AES. In Design, Automation Test in Europe DATE 2015, pages 585–588.
ACM, Mar 2015.

[53] Bin Zhang, Zhenqing Shi, Chao Xu, Yuan Yao, and Zhenqi Li. Sablier v1. Submission to
CAESAR(Round1), March 2014.

[54] Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, and Jian Zhang. LAC: A lightweight
authenticated encryption cipher. Submission to CAESAR(Round1), March 2014.

[55] Zhang, Liting and Wu, Wenling and Sui, Han and Wang, Peng. iFeed [AES] v1. Submission to
CAESAR(Round1), March 2014.

83

http://competitions.cr.yp.to/round1/icepolev2.pdf
http://competitions.cr.yp.to/round1/icepolev2.pdf

www.manaraa.com

Curriculum Vitae

Upendarreddy Mamidi was born on January 10th, 1992 in Hyderabad,India.He received his Bachelor
of Technology degree from Vellore Institute of Technology, Tamilnadu, India in 2013. He started
working towards his master’s degree in George Mason University from August, 2013. He was involved
in teaching various undergraduate courses at George Mason University as a teaching assistant. He
is a research student at Cryptographic Engineering Research Group (CERG) with interest in Light
weight implementations of Authenticated Encryption schemes.

84

	List of Tables
	List of Figures
	Abstract
	 Introduction
	Security Services of Cryptography
	Confidentiality
	Data Integrity
	Authentication
	Non-repudiation of Message

	Confidentiality-only Modes of Operations of Block Ciphers
	Electronic Code Book (ECB) Mode
	Cipher Block Chaining(CBC) Mode
	Cipher Feedback (CFB) Mode
	Output Feedback(OFB) Mode
	Counter (CTR) Mode

	Authentication Techniques
	Cryptographic Hash Functions
	Message Authentication Code(MAC)

	Authenticated Encryption
	What is Authenticated Encryption?
	Advantages of Authenticated Encryption
	Composition Schemes

	 Classification of the CAESAR Candidates
	Introduction
	Functional Requirements of the CAESAR Competition

	Design Classification
	Type
	Features

	 Design Decisions
	Candidate Selection
	Hardware Interface for Fullwidth Designs
	Lightweight Interface
	Design Methodology
	Functional Verification
	Results Generation

	 SILC: SImple Lightweight CFB
	Introduction
	Features
	Recommended Parameter Set

	Encryption and Decryption
	Functions Used in SILC
	Subroutines Used in SILC

	Fullwidth Implementation
	Datapath Design
	Design of Control Logic

	Lightweight Implementation
	Datapath Design for Lightweight Implementation
	Design of Controller

	 Joltik
	Introduction
	Features

	Joltik-BC
	S-box
	MDS Matrix
	Generation of Subtweakeys

	Encryption and Decryption
	Message Processing

	Fullwidth Implementation
	Datapath Design
	Design of Control Logic

	Lightweight Implementation
	Lightweight Joltik-BC
	Optimized Datapath for Lightweight Implementation
	Controller Design

	 ACORN: A Lightweight Authenticated Cipher
	Introduction
	Features
	Functions Used in ACORN

	Encryption and Decryption
	The Initialization
	Processing the Associated Data
	The Encryption
	The Finalization
	Decryption and Verification

	Fullwidth Implementation
	Datapath Design
	Design of Control Logic

	Lightweight Implementation
	Datapath Design
	Control Logic Design

	 Performance Evaluation
	Our Implementation Results
	Throughput Computations
	Resource Utilization
	Throughput/Area

	Analysis of the Results
	Area
	Throughput/Area

	Comparison with Other Published Results
	Fullwidth Designs
	Lightweight Designs

	 Conclusion
	Work Accomplished
	Ranking of Our Implementations

	Bibliography

